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ABSTRACT 

OsteoarthriIs (OA) predominantly aûects diarthrodial joints and is one of the leading causes of joint 

pain and disability. Approximately 240 million individuals currently suûer from this condiIon, a 

number expected to rise by 2030 due to the aging populaIon. OA typically targets the synovial 

membrane, which is a highly vascularized and innervated connecIve Issue crucial in regulaIng 

synovial ûuid volume, composiIon, and chondrocytes maintenance. In OA paIents the synovium 

undergoes signiûcant changes, becoming thicker and more vascularized, with an increased 

inûltraIon of inûammatory cells, including ûbroblast-like-synoviocytes, playing a crucial role in OA 

pathogenesis, due to the release of pro-inûammatory mediators. 

IdenIfying speciûc cell populaIons involved in OA pathogenesis is crucial for understanding the 

disease's cellular mechanisms and developing personalized therapies. 

This thesis aims to develop a bioinformaIcs pipeline to characterize, by Imaging Mass Cytometry 

(IMC) data, cellular composiIon and spaIal distribuIon in OA synovial samples. IMC is a high-

throughput technology enabling the detecIon of more than 40 biomarkers simultaneously on a 

Issue slice, overcoming limitaIons raised by immunohistochemistry and immunoûuorescence, such 

as background noise and signal overlap. To develop the bioinformaIc pipeline, we analyzed synovial 

biopsies from 6 OA paIents by employing a panel of 33 anIbodies to stain the regions of interest 

(ROI) for each paIent. Two ROIs were selected for bioinformaIc analysis. Following the visualizaIon 

of mean marker expression and the applicaIon of fastMNN correcIon to remove non-biological 

diûerences between samples, two approaches, unsupervised and semi-supervised, were employed 

for the analysis of immunophenotype. Both approaches idenIûed similar speciûc cells populaIons, 

though the frequencies of clusters varied among paIents due to the diûerent stages of the disease, 

namely early and late onset. Our ûndings would suggest that the unsupervised approach is more 

suitable for exploratory analysis without the need of any input, due to its characterisIc of randomly 

generaIng clusters; while the semi-supervised one is suggested when the target is known, albeit 

with the risk of missing some important informaIon. SpaIal analysis of cells also represents an 

important step that requires further invesIgaIon, being crucial for a detailed and comprehensive 

understanding of cellular interacIons and behaviors. The development of a detailed bioinformaIcs 

pipeline capable of in-depth characterizaIon of the synovial membrane would serve as a 

fundamental step for conducIng further analysis on larger datasets, ulImately aiming to gain deeper 

insights into OA pathogenesis. 
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1. INTRODUCTION  

1.1 Synovial Joint Anatomy  

The joint is a region of the skeleton where two or more bones interact and arIculate. Its primary 

funcIon is to allow movements between bones and facilitate growth in the early phase of life. 

Inflammatory processes in joint diseases often target synovial joint which is composed of:  

1) The ar$cular capsule, which surrounds the joint. It is consItuted by the ûbrous layer and the 

synovial membrane, also known as synovium. The ûbrous layer connects the bones and 

supports the other layer, while the synovial membrane both produces and absorbs synovial 

ûuid facilitaIng the nutrient exchange between the blood and the joint.  

2) The ar$cular car$lage plays a crucial role in protecIng our joints from mechanical stress and 

impact. It is covered by a thin layer of hyaline carIlage. 

3) The synovial ûuid, located within the joint cavity of a synovial joint, is crucial for lubriûcaIon, 

nutrients distribuIon and shock absorpIon 

(h[ps://www.ncbi.nlm.nih.gov/books/NBK507893/) (Figure 1). 

 
Figure 1: Main structural features of synovial joint. 

 

1.1.2 Synovial Membrane 

The synovial membrane or synovium is important for regulaIng the volume and composiIon of 

synovial ûuid as well as maintaining chondrocytes. It is a connecIve Issue that covers the 

diarthrodial joints, surrounds tendons and forms the lining of bursae and fat pads, facilitaIng the 

movement of non-deformable Issues1,2. This membrane is crucial for the overall health and funcIon 
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of joints due to its high vascularity, containing blood and lymphaIc vessels, as well as being 

innervated2,3.  

The synovium consists of two main layers: the outer layer, also known as the subinIma or sublining 

layer, and the inner one, referred to as the inIma or lining layer. 

The subinIma layer is consItuted by diûerent types of connecIve Issue, including ûbrous, adipose, 

and areolar Issues among the others, while the inIma layer is located near to the joint cavity and it 

consists of 1-3 layers of synovial cells, namely type A and type B synoviocytes1,436. 

Type A synoviocytes, also known as synovial macrophages, play a crucial role in clearing excess 

materials and pathogens from the joint. They also produce and secrete enzymes, cytokines and 

chemokines that contribute to inûammaIon, carIlage degeneraIon and immune response. 

Although predominantly situated in the inIma layer, type A synoviocytes can also be found in few 

numbers within the subinIma layer. 

Type B synoviocytes, or ûbroblast-like synoviocytes (FLS) cells, produce hyaluronic acid (HA). They 

act as a barrier to maintain the synovial ûuid in the capsule, and they regulate and produce 

extracellular matrix (ECM) components2,3,7.  

 

1.2 Osteoarthri6s 

OsteoarthriIs (OA) is one of the most prevalent causes of joint pain and disability1. Currently, 

approximately 240 million people worldwide suûer from symptomaIc OA, which occurs in 

individuals aged 60 years and older, with women being more suscepIble compared to men8310. 

The prevalence of this disorder has been constantly increasing over Ime and is expected to become 

one of the major causes of disability by 2030, correlaIng with the increase in the aging 

populaIon1,11. 

In general, OA is a[ributed to a breakdown in the repair of joint damage, resulIng from stresses or 

some Issue abnormaliIes9. This disorder can manifest in various regions of the body, including the 

knee, hip, hand, foot, and ankle3,8. Clinical manifestaIons include pain, sIûness, reduced joint 

moIon and funcIon, swelling, and muscle weakness. The long-term consequence involves reduced 

physical acIvity, decondiIoning, impaired sleep, faIgue, depression, and disability9,12.  

Several risk factors can increase the possibility of developing OA, including older age, sex, overweight 

or obesity, as well as factors related to bone and joint shape, muscle strength, varus or valgus 

alignment, knee injury, and occupaIonal factors involving repeIIve acIviIes. AddiIonally, geneIc 

factors also may contribute to approximately 30-65% of cases10,13,14. 
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1.3 Osteoarthri6c Synovium 

In healthy individuals, the synovium is a well vascularized ûbro-collagenous Issue consisIng of 1-3 

layers of heterogenous cells fused together such as adipocytes, ûbroblasts, mast cells, and 

macrophages. OA paIents develop some abnormaliIes such as thickening of the lining layer, 

increased vascularity, and inûltraIon of inûammatory cells1,15. Hence, it is evident that the synovium 

assumes a pivotal role in the pathophysiological mechanisms underlying OA3.  

 

There are two stages of OA development: early and late stages.  

The early stage is characterized by increased cell proliferaIon, macrophage inûltraIon and 

angiogenesis. Lymphoid aggregates are present in OA late stage, a feature absent both in healthy 

individuals and in the early stage15. However, synovial inûammaIon is present in both stages of OA16. 

When the synovium becomes inûamed, FLSs proliferate leading to hyperplasia in the lining layer, and 

macrophages and T cells accumulate in the sublining layer, creaIng a vascularized ûbroIc 

environment. Conversely, B cells, mast cells and plasma cells are less abundant1,17. 

In general, macrophages aggregate and form mulInucleated giant cells (MGCs) iniIaIng the innate 

immune response and inducing the release of pro-inûammatory cytokines18. Also, FLSs and 

chondrocytes contribute to the development of inûammaIon. FLSs release the pro-inûammatory 

cytokines interleukin-1 beta (IL-1³) and Issue necrosis factor alpha (TNF-S), and the chondrolyIc 

mediator such as matrix metalloproteinase (MMPs), leading to carIlage degradaIon. AddiIonally, 

FLSs are responsive to cytokines and toll-like receptors (TLRs) whose expression in chondrocytes may 

be upregulated, triggering a catabolic cascade19. 

 

1.3.1 Synovial Cells in OA 

The most represented synovial cells are: FLSs, lymphocytes, macrophages, pericytes and nerve 

ûbers. 

 

FLSs 

FLSs are specialized mesenchymal cells that facilitate the carIlage lubricaIon through the synthesis 

of synovial ûuid, enriched in lubricin and HA17. 

FLSs express surface markers, including intercellular adhesion molecule (ICAM)-1, CD44, and ³1 

integrin. When FLSs are acIvated, they express CD90 (sublining) and Podoplanin (lining) markers2,6; 
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in parIcular, CD90 is expressed also in mesenchymal stem cells (MSCs), and the CD90+ FLSs 

populaIon causes an increase of inûammaIon. Podoplanin is also a tumor biomarker, and it can be 

used to disInguish two types of FLSs populaIons based on the posiIve or negaIve expression of 

CD90. Speciûcally, the CD90+Podoplanin+ FLS populaIon is associated with an inûammatory state, in 

contrast to those cells lacking CD90 expression (CD90-Podoplanin+)20322. 

FLSs expressing speciûc markers have been already associated with diûerent pathological condiIons. 

Among them, CD34 is a surface protein, and it is used to disInguish three diûerent cellular 

populaIons: (1) CD34-CD90+ cells are present in the inIma layer of paIents with rheumatoid 

arthriIs (RA), (2) CD34-CD90- cells surround blood vessels in the subinIma layer of OA paIents, and 

(3) CD34+ cells are present in both RA and OA paIents in the synovial membrane2,22. 

 

LYMPHOCYTES 

Immune inûltraIon of T and B cells has been observed in inûamed OA Issues. 

Speciûcally, T cells resulted to be increased in peripheral blood, synovial ûuid, and synovial 

membrane of OA paIents, suggesIng a potenIal role in OA pathogenesis. Among T cells (CD3+), 

CD4+ and CD8+ T subsets represent the most representaIve consItuent of the synovial inûltrate 

(22%) in OA synovium23.  

B cells have been indicated as possible contributors to OA pathogenesis by producing 

autoanIbodies, presenIng autoanIgens to autoreacIve T cells, secreIng pro-inûammatory 

cytokines and chemokines, and amplifying the inûammatory response24,25. 

 

MACROPHAGES 

Macrophages represent 12-40% of synovial immune cells; speciûcally, those expressing CD14+CD16+ 

are the most abundant and acIve in the synovium17. Macrophages are classiûed into pro-

inûammatory type 1 (M1) and anI-inûammatory M2 cells16,26. The typical markers of M1 cells are 

CD11c and CD16 ones, while the M2 cells express CD163 and CD14 markers17,27. 

In OA paIents, the balance between M1 and M2 cells is altered, since M1 cells are the most 

prevalent and secrete MMP-1, aggrecans, cyclooxygenase, pro-inûammatory cytokines, such as IL-

1³, IL-6 and TNF-S, promoIng then carIlage degradaIon and OA progression16,17. 
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PERICYTES 

Pericytes are specialized cells crucial for vascular funcIon since they regulate angiogenesis, provide 

mechanical support and stability to vessels, and control immune response, ûbrosis, and 

inûammaIon28,29. Due to these funcIons, pericytes are found in speciûc areas, such as precapillary 

arterioles, capillaries, and postcapillary venules28,30. 

Pericytes are characterized by the expression of speciûc markers including CD146, PDGFR (platelet-

derived growth factor receptors) or CD140a-b, NG2 and alpha-smooth muscle acIn (S-SMA)29,30. In 

OA paIents, the higher PDGFR expression is associated with aberrant subchondral angiogenesis, 

contribuIng to disease progression29,31. Pericytes also play an important role in the carIlage 

development, healing of osseocarIlaginous Issues, and pathological processes related to carIlage 

formaIon. 

These cells can undergo osteogenic, chondrogenic, ûbrogenic, and adipogenic diûerenIaIons30, and 

can originate from various cell types including smooth muscle cells, ûbroblasts, endothelial cells, 

and bone marrow28. 

 

NERVES FIBERS 

The nerve growth factor (NGF) is a neurotrophic factor produced by nervous system cells, 

lymphocytes and FLSs. It binds to the NGF receptor (NGFR), expressed in the cells of nervous system. 

NGF overexpression cause by the pro-inûammatory cytokines (as TNF-S and IL-1³) is associated with 

inûammaIon and ampliûed pain in arthriIc joints, in RA paIents and, to a lesser extent, in OA 

ones32,33. 

Synovial Issue contains two types of nerve ûbers, namely sympatheIc and sensory nerve ûbers, 

that innervate the synovium.  

Sensory nerves ûbers express calcitonin gene-related protein (CGRP) which co-localizes with NGF in 

osteochondral channels34,35. UpregulaIon of NGF leads to increased CGRP expression, resulIng in 

ampliûed sensory nerve ûber density and exacerbaIng pain and inûammaIon in OA paIents34,36.  

Instead, sympatheIc nerve ûbers express tyrosine hydroxylase (TH) and are closely associated with 

blood vessels. Their presence is more abundant in OA paIents compared with RA ones35. It has been 

shown that macrophages posiIve for TH and ADRB2 promote the shik from M1 toward M2 

phenotype, with ADRB2 being an adrenergic receptor that acIvates the anI-inûammatory response 

in immune cells37. 
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In conclusions, single-cell technologies facilitate the idenIûcaIon of the diverse immune and 

structural cell landscape and composiIon of the synovium38, revealing heterogeneous and disease-

speciûc cell pa[erns, which may be comprehensively appreciated by exploiIng -omics techniques. 

 

1.3.2 Soluble Inûammatory Mediators in OA 

Soluble pro-inûammatory mediators and cytokines play an important role in OA pathogenesis1. 

Regarding cytokines, they can be classiûed in catabolic, anabolic, and regulatory types3, having a 

central role in the inûammatory process19. 

 

Catabolic cytokines refer to signalling molecules that promote the breakdown of Issues, such as 

carIlage; this is a frequently observed condiIon in OA39. Indeed, these soluble mediators are 

increased in OA synovial ûuid, synovial membrane, carIlage, and subchondral bone, having a 

synergisIc eûect on signaling pathways that increase inûammaIon and carIlage degradaIon1,3. 

Among them, IL-1³ and TNF-³ are pro-inûammatory mediators known to be involved in OA; other 

cytokines such as IL-6, IL-15, IL-17, and IL-18 play also a signiûcant role39.  

IL-1³ is produced by synovial macrophages and chondrocytes, leading to the suppression of ECM 

producIon and to the increase of MMP-1, which induces the degradaIon of carIlage3,19.  

Anabolic cytokines, such as transforming growth factor beta (TGF-³) and insulin-like growth factor-

1 (IGF-1), are signalling molecules that promote Issue growth and repair, playing a role in 

maintaining the health and funcIon of Issues like carIlage in joints3,40. In parIcular, TGF-³ regulates 

the formaIon or degradaIon of ECM, maintaining its homeostasis. In paIents aûected by OA, a 

deûciency of anabolic cytokines is oken reported, with an increase in carIlage degradaIon and 

damage40. 

Regulatory cytokines protect the joint from degradaIon; for example, IL-4, IL-10, and IL-13 exert 

anI-inûammatory properIes on synovial macrophages and up-regulate the producIon of the 

natural inhibitors of catabolic cytokines1,3. IL-4 and IL-10 have also a chondroprotecIve eûect by 

inhibiIng the producIon of MMPs as well as downregulaIng the synthesis of TNF-S, IL-1³, and IL-6. 

AddiIonally, IL-10 sImulates the synthesis of the IL-1³ antagonist (IL-1Ra) and the Issue inhibitor 

of metalloproteases-1 (TIMP-1)39.  
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In OA paIents an imbalance between pro-inûammatory and anI-inûammatory molecules is 

recurrent, with a bias towards the inûammatory side; thus, it is important to comprehensively 

analyze these soluble factors to get deeper insights in disease pathogenesis1,3. 

 

1.4 OA Treatment 

OA treatments involve the use of non-pharmacologic or pharmacologic intervenIons41.  

Non-pharmacological therapies, including exercise and dietary adjustments, not only aimed at 

alleviaIng pain but also in reducing the risk of developing OA, while enhancing physical funcIon9,41. 

On the other hand, current pharmacological opIons include acetaminophen, nonsteroidal anI-

inûammatory drugs (NSAIDs) for treatment of moderate to severe symptoms, opioids for pain 

reducIon, anI-inûammatory cytokines, methotrexate, and intraarIcular (IA) therapies such as 

glucocorIcoid or HA injecIons directly into the joint1,9,41. 

In those paIents that do not respond adequately to the previous treatments, the only opIon is joint 

replacement surgery which is also the most invasive and less economically convenient9,41.  

Currently, FDA-approved disease-modifying drugs for OA capable of alleviaIng pain and impeding 

joint degradaIon are lacking42. 

 

IdenIfying speciûc subpopulaIons linked to the pathogenesis of OA is crucial for enhancing our 

comprehension of the cellular mechanisms underlying the disease and for developing personalized 

therapeuIc intervenIons for OA. 

Recent advancements in omics sciences and high-throughput omics technologies have the potenIal 

to signiûcantly enhance our understanding of the disInct cell populaIons present in the joint Issues 

of each OA paIent, paving the way for personalized therapy approaches43. 

 

1.5 Precision Medicine  

In this context, the precision medicine approach oûers the opportunity for paIent-speciûc 

evaluaIons to select the best treatments or to study the pathological mechanisms for the 

development of tailored therapies. This approach aims to integrate high-throughput biological data 

generated through omics techniques with environmental and lifestyle factors to obtain a complete 

individual proûling able to provide paIent-speciûc details that can be used as diagnosIc, prognosIc, 

and treatment response biomarkers or therapeuIc targets44,45. 
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Various authors describe precision medicine in diûerent ways, characterizing it as a discipline that: 

a) Customizes treatments for individual paIents based on their unique characterisIcs, 

including geneIcs, biomarkers, phenotypic traits, and psychosocial factors, which 

diûerenIate them from others with similar clinical condiIons.  

b) Categorizes paIents into novel subgroups to idenIfy common disease suscepIbility and 

manifestaIon pa[erns within these subcategories, thereby enabling more precise 

therapeuIc intervenIons46.  

 

In summary, precision medicine aims to create personalized treatments for everyone47, recognizing 

that every paIent is unique, and what works for one person may not work for another48. 

For this purpose, omics approaches permit a paIent-speciûc in-depth exploraIon of biological 

molecules and their interacIons within biological systems. These approaches include genomics, 

transcriptomics, proteomics, metabolomics, and epigenomics. 

Through omics invesIgaIon, substanIal amounts of data are generated, far exceeding our capacity 

to process it. Many groups have developed tools aimed at connecIng these gaps, addressing the 

need for instruments capable of analyzing and sorIng the data. BioinformaIcs techniques can help 

in the analysis of this vast amount of data49. The analysis of these data allows us to be[er understand 

disease pathogenesis, with the potenIal to develop more accurate predicIve or prognosIc models. 

Furthermore, these approaches enable us to anIcipate paIent responses to speciûc treatment 

protocols48,50,51. 

 

1.6 Imaging Mass Cytometry 

For many years, immunohistochemistry (IHC) and immunoûuorescence (IF) have been used for 

diagnosis of various diseases. Both IHC and IF uIlize a speciûc primary anIbody that binds to the 

anIgen of interest. Subsequently, a secondary anIbody is added, which binds to the primary one. 

The diûerence between these two approaches lies in their detecIon methods. In IHC the detecIon 

can be chromogenic or ûuorogenic, whereas in IF involves the detecIon of a ûuorescent label 

(ûuorophore). Therefore, the secondary anIbody can be linked to an enzyme that catalyzes a 

chromogenic reacIon, or to a ûuorophore that is observed under a ûuorescent microscope. 

Typically, we can use up to 5-7 diûerent markers together, but this is limited by potenIal overlap 

between the anIbodies, the quality and concentraIon of the anIbodies, and the unstable staining 
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that may be occur. AddiIonally, the signal from ûuorescent probes diminishes over Ime with 

exposure to light, a phenomenon known as bleaching52,53. 

 

Imaging Mass Cytometry (IMC) is an innovaIve mulIdimensional technique, represenIng a cunng-

edge approach for studying complex Issue secIons54. It conûgures as a combinaIon between IHC 

and Mass Cytometry, allowing the simultaneous staining and analysis of markers in both formalin-

ûxed and paraûn-embedded (FFPE) Issues and frozen Issues, facilitaIng the study of various 

pathological processes and diseases53355. 

As menIoned above, compared to the exisIng techniques, IMC adds a step forward perminng to 

detect and visualize simultaneously 35-40 diûerent markers on a single Issue slide. Indeed, each 

anIbody used for Issue staining uIlizes stable metal isotopes linked with metal-chelaIng polymer 

chains rather than ûuorophores or enzymes. DetecIon and quanIûcaIon of metals are conducted 

using a Ime-of-ûight (TOF) mass spectrometer54, which, due to its high resoluIon, allows precise 

localizaIon of proteins within cellular compartments such as nucleus, cytoplasm, or cellular 

membrane56. 

Since IMC can be performed on FFPE secIons, it holds the potenIal for retrospecIve histological 

analysis of paIents with known outcomes. UlImately, leveraging IMC for retrospecIve analysis has 

the potenIal to reûne our understanding of disease processes and improve paIent straIûcaIon, 

ulImately leading to more targeted and personalized treatment approaches55,57. 

In parIcular, the advantages of IMC include high mulIplexing, absence of autoûuorescence, low 

interchannel crosstalk, stable staining, high quanItaIve, and high dynamic range. These a[ributes 

allow for a more in-depth study of speciûc diseases. In addiIon, with bioinformaIc analysis, IMC 

enables the creaIon of diûerent clusters (clustering approach), the study of the interacIons 

between cells and cells populaIons (spaIal analysis), and the idenIûcaIon of speciûc cell 

phenotypes (cell phenotyping). 
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2. AIM 

This internship was carried out at the Immunomics laboratory (Head Prof. Annalisa Chiocchen), and 

it is part of the SINPAIN project (GA n.101057778 HORIZON-HLTH-2021-TOOL-06-02 <A game 

changer for the treatment of osteoarthri0s: a cost eûec0ve combined advanced therapy to treat knee 

osteoarthri0s=), which aims to develop a siRNA-based therapy pipeline for treaIng diûerent stages 

of knee OA. This pipeline will be combined with current therapies and designed step-by-step to 

achieve successful management of inûammaIon and innervaIon therapy for the treatment of early 

and later stages of OA.  

Within the SINPAIN project, our task is set on point a bioinformaIc pipeline to analyze IMC data 

obtained from the staining of synovial samples from paIents aûected by OA.  

We set up the anIbody panel to reach opImal anIbodies concentraIon, proceeding then to the 

samples acquisiIon and analysis, exploiIng bioinformaIc tools. Speciûcally, the comparison of 

diûerent bioinformaIc approaches represents the main focus of this thesis. The proposed pipeline 

will ûnd applicaIon in future studies involving a bigger cohort and has the potenIal to improve the 

current knowledge about OA pathogeneIc mechanisms and progression with an innovaIve 

approach. 
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3. MATERIALS AND METHODS 

3.1 Human Specimens 

Human synovia biopsies were taken by OA paIents (n=6) from the InsItuto de InvesIgacao e 

Inovacao Em Saude da Universidade do Porto (i3s), established in Rua Alfredo Allen, Porto (Portugal). 

PaIents with OA were diagnosed based on clinical symptoms, examinaIon, and radiographic 

ûndings of knee joints.  

All paIents parIcipaIng in this study signed informed consent forms. The study was conducted in 

accordance with the DeclaraIon of Helsinki and approved by the Ethics Commi[ee of the University 

of Eastern Piedmont (protocol OCEANIA 9/21). 

 

3.2 IMC Workûow 

The IMC workûow (Figure 2) can be divided in three parts as shown in Figure 2: 

1) Panel design: markers and anIbody selecIon, metal-anIbody associaIon, and anIbody 

conjugaIon. 

2) Staining and $ssue abla$on: samples processing, morphological and IMC staining and 

samples ablaIon to acquire high-dimensional spaIal data. 

3) Data analysis: biomarkers expression levels evaluaIon and single cell analysis.  

 
Figure 2: Workflow of the study. 

 

3.3 Panel Design 

Table 1 shows the markers included in the staining panel. Each anIbody is linked to a speciûc metal 

based on its target expression in the Issue; anIbodies have been selected following a literature 
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review to eûecIvely characterize the synovial membrane and to determine the opImal diluIon to 

maximize the signal and minimize the background. 

 
Table 1: Antibody panel used for IMC. 

 

3.3.1 Conjuga>on Process 

Metals were dissolved in L-Buûer (StandardBioTools, USA), then loaded onto a polymer, speciûcally 

X8 (StandardBioTools, USA), and puriûed through mulIple washes in C-Buûer (StandardBioTools, 

USA). The process involving the metal-loaded polymer uIlized a ûlter device (Sartorius, UK) with a 3 

kDa membrane to ensure proper handling. The X8 polymer is essenIal for retaining the metal, 

prevenIng its loss during washing, and facilitaIng eûecIve anIbody binding. Simultaneously, 

anIbodies were prepared (in some instances, reconsItuted in PBS), reduced using TCEP (tris-2-

MARKER METAL DILUTION

S-SMA 141 Pr 1:400

Collagen 1 144 Nd 1:400

CD14 148 Nd 1:400

CD146 160 Gd 1:400

CGRP 163 Dy 1:400

CD19 142 Nd 1:300

CD4 156 Gd 1:250

TH 143 Nd 1:200

HLA-DR 151 Eu 1:200

CD11c 154 Sm 1:200

IL-6 161 Dy 1:200

CD140a-b 164 Dy 1:200

Fibronectin 174 Yb 1:200

CD138 149 Sm 1:150

CD11b 146 Nd 1:100

CD163 147 Sm 1:100

CD66b 152 Sm 1:100

CD16 153 Eu 1:100

CD90 158 Gd 1:100

MMP-1 159 Tb 1:100

CD8 162 Dy 1:100

MMP-2 166 Er 1:100

NGFR 167 Er 1:100

NG2 171 Yb 1:100

IL-1³ 173 Yb 1:100

Podoplanin 175 Lu 1:100

CD31 145 Nd 1:50

TIMP-1 150 Nd 1:50

TNF-S 155 Gd 1:50

CD34 168 Er 1:50

NGF 169 Tm 1:50

CD3 170 Er 1:50

NFH 172 Yb 1:50
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carboxyethyl-phosphine), and puriûed through washes in C-Buûer. TCEP was necessary for anIbody 

reducIon to enable successful conjugaIon with the metal. Subsequently, the anIbody was 

conjugated with the metal-loaded polymer, followed by addiIonal washes in W-Buûer 

(StandardBioTools, USA), and the recovery rate of this process was quanIûed. All anIbody-related 

procedures uIlized a ûlter device (Sartorius, UK) equipped with a 50 kDa membrane. 

Following the ûnal wash with W-Buûer, 80 ¿l of W-Buûer were added to dilute the conjugate. Then, 

the conjugated anIbodies were quanIûed using a NanoDrop spectrophotometer, measuring the 

absorbance of a 2 ¿l aliquot at 280 nm against a W-Buûer blank. To ensure stability, AnIbody 

Stabilizer PBS supplemented with 0.05% sodium azide (Candor Bioscience, Germany) was added, 

and the conjugated anIbodies were stored at +4°C in Protein LoBind tubes of 1.5 ml (Eppendorf, 

Germany) (Figure 3). 

 
Figure 3: Workflow of antibodies conjugation. 

 

3.4 Staining and Tissue Abla6on 

Synovial Issue biopsies were obtained from residual knee joint Issues of paIents diagnosed with 

OA at various stages of disease. 

Samples were processed within a class II containment hood, where the synovial Issue was carefully 

separated from the joint and placed into a 4% formalin soluIon for human Issue samples. The 

samples were ûxed in 4% buûered formalin soluIon for 24 to 48 hours, before proceeding with Issue 

processing and embedding in paraûn. 
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3.4.1 Sample Processing 

Aker sample ûxaIon, synovial Issues were processed using the FFPE procedure.  

Brieûy, the samples were hydrated in ascending grades of alcohol (70%, 80%, 95%, 100%) for 90 

minutes each, followed by immersion in xylene for 90 minutes to facilitate paraûn inûltraIon. Later, 

they were submerged into paraûn overnight to permit proper inûltraIon, and, the next day, the 

samples were embedded into paraûn blocks. This ûnal step requires proper orientaIon of the 

sample to obtain observable secIons suitable for IMC staining.  

Overall, 6 blocks were obtained, one for each OA paIent. Successively, serial secIons for each 

sample of 5 µm thickness were cut using a microtome with S35 blade, opImized for sok Issue (Leica, 

Germany), and aker a few minutes in the water bath at 37°C, they were posiIoned on charged glass 

slides (Bio OpIca, Milan). The ûrst secIon was used to perform Hematoxylin and Eosin staining (Bio 

OpIca, Milan) for histomorphology, while the following secIons were used to perform the IMC 

staining.  

 

3.4.2 Hematoxylin and Eosin Staining 

Carazzi's Hematoxylin was chosen for its less intense cytoplasm staining. It comprises a complex of 

hematein (hematoxylin oxidized by potassium iodate) and aluminum potassium sulfate, which 

carries a posiIve charge facilitaIng binding to anionic sites on chromaIn histone proteins. The 

expected results are nuclei stained in purple and cytoplasm in red-pink. 

The wax on secIons was removed by soaking them in xylene for 20 minutes, followed by hydraIon 

in descending concentraIons of alcohol (100%, 95%, 80%, and 70%) and rinsing in disIlled water 

before staining with Carazzi's Hematoxylin for 12 minutes. A 5-minute tap water wash was 

performed to ûx the Hematoxylin staining, due to the presence of salts. Subsequently, secIons were 

immersed in aqueous 1% Eosin for 1 minute, followed by a ûnal wash in disIlled water to remove 

Eosin. SecIons were then dehydrated in ascending concentraIons of alcohol (70%, 80%, 100%) for 

1 minute each, cleared in xylene for 10 minutes, and ûnally mounted using BioMount HM (Bio 

OpIca, Milan). 

 

3.4.3 IMC Staining 

The slides underwent a series of steps as following: ûrstly, they were placed in an oven at 60°C for 2 

hours to dissolve the paraûn, followed by dewaxing with xylene for 20 minutes and dehydrated in 
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descending concentraIons of ethanol (100%, 95%, 80%, 70%) for 5 minutes each, and then washed 

in Maxpar Water for other 5 minutes (StandardBioTools, USA).  

Subsequently, the slides were placed into a preheated anIgen retrieval soluIon at 96°C for 30 

minutes, for retrieving anIgens masked by ûxaIon and make them more accessible. This soluIon 

was prepared by diluIng 4 ml of Dako target retrieval soluIon 50X (Dako, Denmark) in 36 ml of 

Maxpar Water. 

Following incubaIon, the tubes containing the slides and the retrieval soluIon were removed from 

the oven and placed on a lab bench for 10 minutes to cool them to a temperature of 70°C. The slides 

were washed in Maxpar Water and then in Maxpar PBS (StandardBioTools, USA). The secIons were 

encircled with an A-PAP pen (BioOpIca, Italy) and blocked with 3% BSA in Maxpar PBS for 45 minutes 

at room temperature in a hydraIon chamber, to prevent nonspeciûc binding.  

The anIbody cocktail was prepared with PBS and BSA 0.5% and added onto the secIons, which were 

lek to incubate overnight at 4°C in a hydraIon chamber. The volume of the blocking soluIon and 

anIbody cocktail was opImized for speciûc Issues and calculated depending on the size of each 

secIon and the number of total secIons. 

On the next day, the slides were washed two Imes in 0.2% Triton X-100 in Maxpar PBS for 8 minutes 

each to permeabilize the membrane, followed by two washes in Maxpar PBS for 8 minutes each. 

The Issues were stained with Intercalator-Ir (StandardBioTools, USA) in Maxpar PBS for 30 minutes 

at room temperature in a hydraIon chamber to label the nuclei. Finally, the slides were air-dried 

aker a last wash in Maxpar Water. 

 

3.4.4 IMC Abla>on Test and Acquisi>on  

To ensure adequate signal quality, it is important to adjust the ablaIon energy for the samples. The 

ablaIon energy refers to the energy of the laser ray delivered to the sample, and it can be adjusted 

using the energy a[enuator. OpImal laser energy (measured in dB) varies depending on the Issue 

type and must be opImized before sample acquisiIon. 

To determine the opImal signal-to-noise (SNR) raIo for the 193Ir (DNA-intercalator) channel in the 

MCDTM Viewer, a laser energy ramp was conducted across mulIple regions of interest (ROIs). Five 

adjacent small ROIs of 50x50 µm were selected; increasing dB values were assigned to each ROI, 

starIng from 0 dB, and incremenIng to 1, 2, 3, 4, and 5 dB. The ablaIon energy was set to 2 dB for 

each ROI.  
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SecIons were acquired using imaging IMC (Hyperion, StandardBioTools, USA), which uses a powerful 

laser to ablate the samples. Laser ablaIon involves the eliminaIon of Issue plumes from a solid 

surface (such as a glass slide) by irradiaIng it with a pulsaIng laser beam. Each laser pulse ablates 

Issue from a spot measuring 1 ¿m2, with the Issue plumes being carried by helium gas to an argon 

ûow within the inducIvely coupled plasma argon system. Here, the Issue plumes are aerosolized, 

atomized, and ionized before entering into TOF chamber for detecIon (CyTOF instrument). The 

detector oûers a resoluIon of 1 Da, and discriminaIon of lanthanides is based on their mass. 

Subsequently, the abundance of each isotope can be mapped back to the original coordinates for 

each Issue spot. 

 

The Issue was examined systemaIcally, spot-by-spot, while the slide was moved under the laser for 

scanning the whole ROI. The acquisiIon speed averaged around 100-120 minutes for each 1 mm2 of 

Issue. Each ablaIon spot corresponds to an image pixel, with each pixel containing various metal 

ions. The resulIng output consists of a reconstructed mulI-channel mulIparametric image. 

 

Since it is not possible to ablate the whole sample, ROIs selecIon is a fundamental step for both 

acquisiIon and analysis. Thus, a standardized pipeline was developed, involving consecuIve ROIs 

selecIon, ulImately resulIng in the creaIon of a composite sample image. This approach is 

implemented for analyzing biopsies from each paIent, facilitaIng a more in-depth evaluaIon, and 

eliminaIng bias associated with targeIng speciûc structures of interest. 

Each ROI covered an area of 717x661 mm and was acquired at a rate of 200 Hz, and the collected 

data were then exported in MCD format. The size of each ROI can be adjust based on the presence 

of the glass slide, that can cause interference during the ablaIon process. 

 

3.5 Data Analysis 

3.5.1 MCDTM Viewer 

To evaluate the quality of the staining each marker was visualized using the MCDTM Viewer sokware 

(StandardBioTools). This step is crucial for the opImizaIon of anIbody diluIons and evaluaIon of 

staining speciûcity, background occurrence, and potenIal channel crosstalk allowing to visualize a 

maximum of 7 markers simultaneously. It also provides percepIons into the staining's cellular 

localizaIon, whether it envelops the enIre cell surface, is restricted to speciûc areas, or is 
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perinuclear. The colors observed in the resulIng image are termed pseudo colors because they are 

selected by the operator. 

High-quality staining is crucial for precise single-cell analysis clustering. To minimize background 

noise and enhance signal clarity, various anIbody diluIons were validated, with adjustments of the 

blocking step duraIon and concentraIon. 

 

3.5.2 IMC Segmenta>on Pipeline 

To characterize our paIents, we used the <IMC SegmentaIon Pipeline= for IMC data analysis 

provided by BodenmillerGroup 

(h[ps://bodenmillergroup.github.io/IMCDataAnalysis/processing.html). 

The IMC segmentaIon pipeline provides a relaIvely hands-on method for segmenIng mulI-channel 

images through a pixel classiûcaIon-oriented approach. This pipeline is divided in three parts: (1) 

pre-processing, (2) single cells analysis, and (3) spa$al analysis. 

 

PRE-PROCESSING 

In this step, images data were prepared for processing with Steinbock toolkit. It involves creaIng a 

panel ûle and extracIng images starIng from .txt ûles generated during Hyperion acquisiIon. 

Subsequently, the ilasIk sokware was used for pixel classiûcaIon, determining the probabiliIes of 

pixels belonging to a speciûc class (such as nucleus, cytoplasm, or background) for each image, based 

on a random forest approach. Then CellProûler was employed for object segmentaIon. It is a pixel 

classiûcaIon-based image segmentaIon, that requires probability images generated before. The 

ûnal result was a greyscale object masks containing unique pixel values for each object.  

 

Lastly, there was a step for object measurement, where diûerent cell features like object intensiIes, 

object proprieIes (such as area, centroid, major and minor axis length, and eccentricity) and object 

neighbors were measured. In parIcular, the neighbors were assessed based on distances between 

object centroids, borders, and by pixel expansion. The object centroid evaluaIon includes measuring 

the maximum distances between object centroids (dmax = 15) and idenIfying the k-nearest 

neighbour based on centroid distances (kmax = 5). 
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SINGLE-CELL ANALYSIS 

In this secIon, the iniIal step involves imporIng single-cell data and images into R Studio aker image 

processing and segmentaIon. 

 

The segmentaIon quality control was used to observe the accuracy of our data using the 

cytomapper package. For the image-level quality control and the cell-level quality control it is 

important to calculate the SNR for individual channels and markers; it was calculated as SNR = Is/In, 

where <Is= is the mean intensity of pixels with true signal, and <In= is the mean intensity of pixels 

containing noise. The threshold to disInguish between signal and noise pixels was determined using 

the Otsu thresholding method58, separaIng foreground (signal) and background (noise) pixels. SNR 

was then computed as the mean intensity of foreground pixels divided by the mean intensity of 

background pixels. 

 

The next step involves performing batch eûect correcIon that removes the non-biological 

diûerences between samples (such as diûerent reagents, concentraIon of anIbody), and facilitates 

the detecIon of cell phenotypes. There are three diûerent types of correcIon:  

- FastMNN correcIon tries to idenIfy the mutual nearest neighbors (MNN) among cells from 

diûerent samples and correct the diûerenIal expression between batches to align the data. 

- Harmony correcIon aims to cluster and correct the posiIons of cells by removing the 

diûerences between paIents, taking into consideraIon cell types rather than the speciûc 

condiIons of the data. 

- Seurat correcIon tries to idenIfy the MNN in a low-dimensional space before correcIng the 

expression values of cells. In summary, it uses some techniques of normalizaIon, correcIon, 

and ûltering to reduce biological variability between samples. 

 

For this step, the fastMNN correcIon method was preferred because it takes into consideraIon 

variability between paIents. This ulImately led to a be[er analysis and comparison of the data.  

 

The ûnal step of this secIon was to deûne cell phenotypes by clustering them using speciûc 

algorithms. We used two methods: semi-supervised, where we manually generated clusters based 

on our desired outcomes (gaIng cells), and unsupervised, where clusters were generated by a 

clustering approach without our inûuence (PhenoGraph). 
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The unsupervised approach uses the PhenoGraph clustering method, that considers a group of cells 

and tries to ûnd the most similar cells based on the distance between them (using Euclidean 

distance). Then, it creates a graph based on these similariIes to ulImately obtain clusters of cells 

with similar characterisIcs. The names of the clusters were assigned based on the expression of 

diûerent markers.  

For the semi-supervised approach, the cytomapper package was used for gaIng cells based on 

marker expression and visualizing selected cells directly on images. In this case, the clusters that 

were created, were inûuenced by our input because we gated the cells based on our interests and 

desired outcome. This approach allowed us to obtain informaIon about the accuracy of cluster 

formaIon. We could visualize if each cell phenotype was correctly classiûed or misclassiûed and, in 

the end, visualize the probability of ûnding a speciûc cluster. 

 

As a ûnal outcome, it was possible to visualize single-cell data and markers abundance at both cell 

and sample level. For instance, to visualize the mean marker expression per cell type, we chose Z-

score scaling. 

 

SPATIAL ANALYSIS 

In this secIon, single cells were analyzed in their spaIal Issue context. It was possible to visualize 

the cells9 centroids and cell-cell interacIons as spaIal graphs and perform a spaIal community 

analysis or a cellular neighborhood analysis.  

The spaIal community analysis was based on cell interacIons to idenIfy the major populaIon 

present in the samples. The cellular neighborhood created groups of cells based on the informaIon 

contained in the direct neighborhood. It was conducted in two diûerent ways: (1) determining the 

proporIon of cells of a speciûc type among the neighbors of each cell, and (2) summing the 

expression counts across all neighboring cells for each individual cell.  

Finally, the interacIon analysis was uIlized to perform a staIsIcal test about the interacIon 

between all cell types in the dataset. It took into consideraIon the interacIon of a cell type with 

many images, or a speciûc number of cells of a certain type that were located around a target cell 

type.  
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4. RESULTS 

4.1 Establishment of Staining and Acquisi6on Protocol 

The analysis was performed on synovial biopsies taken from 6 OA paIents. Tissues were embedded 

in paraûn, and they were processed and acquired with Hyperion. 

 

Firstly, Hematoxylin and Eosin staining was performed, as shown in Figure 4, to orient the Issue and 

to idenIfy within the biopsies the synovial regions (marked in red) to be subsequently selected 

during the ablaIon process (Figure 5). 

 
Figure 4: (A) Hematoxylin and Eosin staining at higher magnification. (B) The red lines represent the part of tissue that is 

synovium.  

 

On that selected region, we performed IMC acquisiIon. We set the anIbodies panel made of 33 

anIbodies to target the cells of interest. To opImize the staining and avoiding any issue in the 

signal/background raIo we performed serial diluIon of each anIbody, as shown in Table 2. 
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Table 2: Selected dilutions for each antibody and its respective target. 

 

IMC staining was performed simultaneously on all samples to facilitate comparison among samples 

by reducing the batch eûect, which is a systemaIc variaIon caused by diûerences in reagent lots, 

sample preparaIon, staining condiIons, or instrument use, rather than actual biological diûerences 

between samples. 

 

Before each sample ablaIon, ROIs were chosen based on the Hematoxylin and Eosin staining shown 

in Figure 4. Each ROI was designed with a standardized dimension of 717x661 nm, which can be 

modiûed if the area of interest includes a large part of the glass slide (Figure 5). 

Figure 5: ROIs design before acquisition. 

 

Aker the ablaIon, the acquired ROIs were ûrstly visualized using MCDTM Viewer. This sokware allows 

the visualizaIon of up to 7 colors simultaneously for the evaluaIon of staining quality and eûcacy.  
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MARKER METAL DILUTION TARGET

HLA-DR 151 Eu 1:200 Antigen Presenting Cells

CD19 142 Nd 1:300 B cells

IL-1³ 173 Yb 1:100 Cytokines

IL-6 161 Dy 1:200 Cytokines

TNF-S 155 Gd 1:50 Cytokines

CD31 145 Nd 1:50 Endothelium

CD34 168 Er 1:50 Endothelium

CD90 158 Gd 1:100 Fibroblast Like Synoviocytes

Podoplanin 175 Lu 1:100 Fibroblast Like Synoviocytes

CD11c 154 Sm 1:200 Macrophages M1

CD163 147 Sm 1:100 Macrophages M2

Collagen 1 144 Nd 1:400 Matrix

Fibronectin 174 Yb 1:200 Matrix

MMP-1 159 Tb 1:100 Matrix

MMP-2 166 Er 1:100 Matrix

TIMP-1 150 Nd 1:50 Matrix

MARKER METAL DILUTION TARGET

CD14 148 Nd 1:400 Monocytes

NFH 172 Yb 1:50 Myelinated Nerve Fibers

CD11b 146 Nd 1:100 Myeloid Cells

NGF 169 Tm 1:50 Nerve Growth Factors

NGFR 167 Er 1:100 Nerve Growth Factors Receptors

CD16 153 Eu 1:100 Neutrophils

CD66b 152 Sm 1:100 Neutrophils

CD140a-b 164 Dy 1:200 Pericytes

CD146 160 Gd 1:400 Pericytes

NG2 171 Yb 1:100 Pericytes

CD138 149 Sm 1:150 Plasma Cells

CGRP 163 Dy 1:400 Sensory Nerves Fibers

TH 143 Nd 1:200 Sympathetic Nerves Fibers

CD3 170 Er 1:50 T Cells

CD8 162 Dy 1:100 T Cytotoxic Cells

CD4 156 Gd 1:250 T Helper cells

S-SMA 141 Pr 1:400 Vessels
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As an example, Figure 6A shows the staining for CD14 (shown in red), which is a marker expressed 

by monocytes. Figure 6B shows a combinaIon of 4 diûerent markers allowing the discriminaIon of 

diûerent type of cells simultaneously: CD14 (red, monocytes), CD140ab (cyan, pericytes), NGFR 

(white, nerve growth factor receptor), and IL-1³ (green, a proinûammatory cytokine). DNA is marked 

in blue. 

 
Figure 6: MCDTM Viewer images. (A) CD14 marker alone in red. (B) Multiple colors image in which CD14 is marked in 

red, CD140ab in cyan, NGFR in white, and IL-1³ in green. In both images, DNA is colored in blue. 

 

4.2 Data Analysis 

In order to perform, the bioinformaIc analysis, 2 ROIs for each of the 6 paIents have been chosen 

and the corresponding .txt ûles were generated by the IMC processing, used for the pre-processing 

step.  

 

IniIally, a Steinbock panel ûle was generated (Table 3); it contained informaIon about the channels 

in an image, namely <channel= (related to the metal conjugated to the anIbody) and <name= 

(related to the anIbody used), and addiIonally the remaining columns allow us to select the 

channels used in diûerent tasks of analysis (keep, ilasIk, DeepCell, CellPose). In this step markers of 

interest to perform the analysis were selected. 

(A) (B) 
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Table 3: Steinbock panel file.  

 

Aker pre-processing the panel and the IMC images, the pixel classiûcaIon step was performed using 

the ilasIk sokware, which employs a random forest approach to execute this task. During this step 

we marked on each image in red the nucleus, in green the cytoplasm and in blue the background in 

order to train the machine for the diûerenIaIon of these disIncIve regions in each ROI.  

channel,name,keep,ilastik,deepcell,cellpose

ArAr80,80ArAr,0,,,

I127,127I,0,,,

Xe131,131Xe,0,,,

Xe134,134Xe,0,,,

Ba138,138Ba,0,,,

Pr141,aSMA,1,,,

Nd142,CD19,1,,,

Nd143,TH,1,,,

Nd144,COL1,1,,,

Nd145,CD31,1,,,

Nd146,CD11b,1,,,

Sm147,CD163,1,,,

Nd148,CD14,1,,,

Sm149,CD138,1,,,

Nd150,TIMP-1,1,,,

Eu151,HLA-DR,1,,,

Sm152,CD66b,1,,,

Eu153,CD16,1,,,

Sm154,CD11c,1,,,

Gd155,TNFa,1,,,

Gd156,CD4,1,,,

Gd158,CD90,1,,,

Tb159,MMP-1,1,,,

Gd160,CD146,1,,,

Dy161,IL-6,1,,,

Dy162,CD8,1,,,

Dy163,CGRP,1,,,

Dy164,CD140a-b,1,,,

Ho165,ADRP2,0,,,

Er166,MMP-2,1,,,

Er167,NGFR,1,,,

Er168,CD34,1,,,

Tm169,NGF,1,,,

Er170,CD3,1,,,

Yb171,NG2,1,,,

Yb172,NFH,1,,,

Yb173,IL-1b,1,,,

Yb174,FIBRONECTIN,1,,,

Lu175,PODOPLANIN,1,,,

Ir191,DNA1,1,1,,

Ir193,DNA2,1,2,,
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Finally, the whole batch of images was processed to obtain probability images, where each colour 

represents the probability of pixels belonging to the corresponding class.

 Figure 7: Ilastik probability image after batch processing. In the image, cytoplasm (shown in green), nuclei 
(shown in red) and the background (shown in blue) are represented. 

 

Later, the object segmentaIon was performed with CellProûler, which requires probability images 

generated by the preceding pixel classiûcaIon step as input. In addiIon, aker the segmentaIon step, 

grayscale object masks were created containing unique pixel values for each object.  

 

Finally, the ROIs object intensiIes, region proprieIes, and the object neighbours were evaluated. In 

parIcular, the neighbours can be assessed based on distances between object centroids, that 

measuring the maximum distances between object centroids (dmax = 15) and idenIfying the k-

nearest neighbour based on centroid distances (kmax = 5). 

 

Following image processing and segmentaIon, the data generated were read in R Studio.  

The iniIal part involved the image and cell-level quality control. We evaluated all 12 ROIs to observe 

the accuracy of the segmentaIon. Using cytomapper funcIon, as quality check, we overlapped the 

masks obtained from the segmentaIon process with the composite images allowing us to observe 

if the nuclei were centered within the segmentaIon masks and if all cell types were correctly 

segmented (Figure 8). 

 

 
 
 
 
 
 
 
 



 28 

 
Figure 8: Segmentation quality control. This image is used to observe whether the nuclei are centered within the 

segmentation masks and if all cell types are correctly segmented. In the image, DNA1 and DNA2 are visualized in blue, 
NGFR in yellow, NGF in red, and IL-1³ in green. 

 

AddiIonally, single-cell expression of diûerent markers can be visualized in the form of heatmap 

grouping the paIents based on their indicaIon. In this case, we choose to group all the paIents 

under the same indicaIon (OA) since the study is sIll blinded so we were not able to straIfy the 

paIents based on the grade of the disease (Figure 9). 

 
Figure 9: Heatmap of single-cell expression based on the indication (OA) of patients. Blue denotes low expression, light 
blue intermediate expression, and yellow high expression. In the upper part of the heatmap are indicated the indication of 
the patients and the number of cells. The dendrograms on the left and on the top represent the similarity among markers 

and numbers of cells respectively. 
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As shown in Figure 9, on a sample of 2000 cells among all paIents, SSMA and FibronecIn markers 

were the most highly expressed ones. However, it is possible to observe that CD14, CGRP, and COL1 

markers were expressed at low levels compared to the other ones. 

 

To improve visualizaIon, the mean marker expression per image can be displayed (Figure 10). This 

would help idenIfy images with outlying marker expressions, highlighIng the biological diûerences.  

 
  Figure 10: Heatmap of mean marker expression per image. Blue denotes low expression, light blue intermediate 

expression, and yellow high expression. The upper part of the heatmap indicates ROIs, indication, and patient_id. The 
dendrograms on the left and on the top represent the similarity among markers and ROIs respectively. 

 

We found variable expression of each marker between paIents and samples. For example, 

<SD49_ROI_001= and <SD49_ROI_002= show diûerent marker expressions, even though they are 

samples from the same paIent. In addiIon, the marker expression of paIents SD49 and SD48 are 

completely diûerent. This variability can be related to the diûerent degrees of the disease in these 

paIents. 

 

To assess data quality at the single-cell level, we calculated the SNR as the raIo between the mean 

of the posiIve signal and the mean of the negaIve signal. As shown in Figure 11, we observe a 

relaIvely high signal intensity and a suûcient SNR raIo for all markers, except for DNA1 and DNA2 
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ones. These two markers likely have high intensity because some nuclei were considered as 

background. 

 
Figure 11: Signal intensity and SNR ratio for various markers at single-cell level. 

 

As menIoned above, we found a variability among paIents (Figure 10). To address it, we used 

ridgeline visualizaIons to compare the staining pa[erns of all markers across all samples (Figure 12). 

 

2

2
2
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Figure 12: Ridgeline visualization for marker expression among all patients. 

 

We found that diûerences in marker expression across paIents can be ascribed to the diûerent 

abundances of cells in each ROI.  

 

Finally, a non-linear dimensionality reducIon method was applied to project cells from high-

dimensional down to low-dimensional space, allowing to visualize high dimensional data in a two 

bidimensional space. Within this step, we generated UMAP (Uniform Manifold ApproximaIon and 

ProjecIon) and TSNE (t-Distributed StochasIc Neighbor Embedding) graphs (Figure 13). 

UMAP a[empts to preserve the global structure of the data, be[er maintaining relaIve distances 

between data groups, which helps to interpret global relaIonships between clusters. On the 

contrary, TSNE focuses on preserving the local structure of the data, to maintain the similar point 

near to each other, thus making clusters clearly disInct. 
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Figure 13: Representation of UMAP, in the left part, and TSNE, in the right part, colored according to patient_id as 

indicated.  

 

Then, we performed a fastMNN correcIon, which idenIûes the MNN among cells from diûerent 

samples and corrects diûerenIal expression between batches to align the data. 

 

To assess the quality of the batch correcIon, the batch.size and lost.var entries are important. 

The batch.size entry reports the relaIve magnitude of the batch eûect, while the lost.var entry 

represents the percentage of lost variance per merging step. A large batch.size and

low lost.var indicate suûcient batch correcIon (Figure 14). 

 
Figure 14: Batch.size and lost.var after fastMNN correction. The batch.size concerns to the initial part of the code, while 

the lost.var is related to the second part of the code. It is evident that the numbers for each patient are lower in the 
lost.var compared to the batch.size. 

 

As shown in the table generated with the code, the lost.var was lower compared to batch.size  

indicaIng that the batch correcIon is eûecIve. For a be[er and easier visualizaIon of the correcIon, 

we generated a UMAP (Figure 15) which merged all paIents. 
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Figure 15: UMAP before (left) and after (right) fastMNN correction, colored according to patient_id as indicated.  

 

The expression of markers in the UMAP before and aker fastMNN correcIon can be visualized 

(Figure 16). 

 

(A) 
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Figure 16: UMAP of the expression markers (A) before and (B) after fastMNN correction. Blue represents lower 
expression level, while light green indicates marker expression. All markers are merged after batch correction. 

 

Aker fastMNN correcIon, all markers were merged without creaIng separate clusters, as well as all 

paIents9 data were well-integrated, as shown in Figure 15 where the UMAP aker fastMNN 

correcIon showed a perfect overlap of paIents. 

 

The most important part involves cell phenotyping. It can be performed applying a semi-supervised 

or unsupervised approach. For this instance, we decided to use both approaches to compare the 

results and determine the best one based on the desired goal.  

In a semi-supervised approach, we manually created clusters to align with our speciûc desired 

outcomes (known as gaIng cells). Conversely, in an unsupervised approach, clusters were formed 

autonomously by a clustering algorithm, such as PhenoGraph, without any manual intervenIon or 

predeûned criteria. 

 

(B) 
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4.2.1 Unsupervised Analysis 

In an unsupervised analysis, the clustering approach groups cells based on their similarity in marker 

expression or by their proximity in low-dimensional space. For our purpose, we chose the 

PhenoGraph clustering approach which considers groups of cells and idenIûes the most similar cells 

based on their distances. This algorithm constructs a graph based on these similariIes to ulImately 

form clusters of cells having similar characterisIcs. 

For the PhenoGraph funcIon, we choose 60 as <k= value (k = nearest neighbours) since this value 

reaches a plateau in the generaIon of clusters, resulIng in the generaIon of 21 clusters. We 

generated the PhenoGraph clusters (Figure 17) on UMAP before and aker the fastMNN correcIon.  

 

 
 
 
 
 
 
 
 

2

2
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Figure 17: Clusters obtained by PhenoGraph clustering approach. (A) UMAP visualization before applying PhenoGraph 

clustering approach and batch correction, showing 21 clusters. (B) UMAP visualization after applying PhenoGraphs 
approach and batch correction, showing 17 clusters.  

 

Cluster annotaIon has been performed by manually labelling each PhenoGraph generated clusters 

aker fastMNN correcIon based on their marker expression visualized on heatmap (Figure 18).   
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Figure 18: Heatmap of marker expression after PhenoGraph clustering approach. The upper part of the heatmap 

indicates patient_id and pg_clusters_corrected, representing the 17 clusters generated after applying PhenoGraph and 
batch correction. Red color denotes marker expression, while white color indicates non-expression. The dendrograms on 

the left represent the similarity between marker expression.  

 

The clustering method allowed to group speciûc cells populaIons of interest such as FLSs, 

monocytes, macrophages, T cells, endothelial cells, pericytes, and stroma. Each cluster is named 

based on the expression of speciûc markers that represent a cell populaIon: 

- Stroma  

- Pericytes  

- Endothelium/Pericytes  

- Classical Monocytes 

- Monocytes 

- Endothelium 

- Pericytes/NGFR+/MMP1+ 

- Endothelium/Pericytes/FLS 

- Endothelium/Pericytes/NGFR+ 

- T/Plasma/IL6/MMP2+ 

- Sensory nerve Fibers 
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 AddiIonally, we labelled all cells not belonging to a deûned cluster, as <undeûned=. 

 

Lastly, we generated a fastMNN-corrected UMAP (Figure 19) to visualize the disposiIon of the 

clusters. 

 
Figure 19: fastMNN-corrected UMAP colored according to cell clusters as indicated.  

 

The disposiIon of clusters can be visualized in each ROI, with each point represenIng a speciûc cell 

that is part of a speciûc cluster (Figure 20). 
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Figure 20: Distribution of cells within specific cluster. Each image represents different ROIs of patients. 

 

For the visualizaIon of each marker related to a speciûc cell type, we chose the Z-score scaling to 

be[er appreciate the diûerenIal expression of markers. In this scaling, those anIbodies that were 

less expressed were marked in blue, while those markers that were higher expressed were coloured 

in red. We generated then two diûerent graphs: one showing all the markers used in the panel 

(Figure 21A) and the other one showing our markers of interest (Figure 21B), which allowed us to 

visualize FLSs, monocytes, macrophages, T cells, endothelial cells, pericytes, and stroma 

populaIons. 
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Figure 21: Heatmap with Z-score scaling. (A) Z-score scaling with all markers. (B) Z-score scaling with markers of 

interest. The upper part of each heatmap indicates the number of cells (ncells), with blue representing fewer cells, purple 
representing a medium quantity, and yellow representing a high quantity of cells; it also indicates cluster_celltype, with 

each color corresponding to a different cluster. The dendrograms at the top and left represent the similarity between cell 
numbers and marker expression. In red are indicated markers with higher expression, while in blue markers with lower 

expression. 

 

As shown in Figure 20, we found diûerences related to the expression of some markers. For example, 

in Figure 20B the <Stroma= cluster (shown in blue) expressed only COL1 and not FibronecIn markers, 

while the <Endothelium/Pericytes= (shown in orange) and the <Endothelium/Pericytes/FLS= clusters 

(shown in dark red) expressed the markers speciûc to these populaIons, namely endothelial cells, 

pericytes and FLSs. 

 

To display the frequencies of cell types per sample, we generated two diûerent bar plots. The ûrst 

plot (Figure 22A) had the indicaIon of the disease on the X-axis, which in the same for all samples 

(OA). The second plot (Figure 22B) uses the paIent_id on the X-axis, represenIng the name assigned 

to each ROI. The Y-axis in both cases represents the percentage of each cell type. 

2

2

2

2
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Figure 22: Bar plot of cluster abundance. (A) Bar plot based on indication (OA). (B) Bar plot based on patient_id. In both 

bar plots, each color is associated with cluster names. 

 

Our ûndings conûrmed that all paIents expressed all clusters, except for the <T/Plasma/IL6/MMP2+ 

(shown in dark green) and the <Sensory Nerve Fibers= clusters (shown in light pink). This is probably 

due to the fact that we used diûerent samples from diûerent paIents with a possible diûerence in 

the grade or severity of the disease. In addiIon, the consideraIon of only 2 ROIs for each paIent 

could represent a factor of variability between each sample. 

 

The analysis pipeline includes at the end a spaIal analysis focusing on the interacIon between all 

cell types in the dataset, parIcularly <from= cell type and <to= cell type (Figure 23), where red Iles 

indicate cell type pairs that signiûcantly interacted in many images. Conversely, blue ones represent 

cell type pairs that tended to avoid each other in many images. These interacIons can occur within 

the same cluster or between diûerent clusters. 

(A) 

(B) 
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This funcIon calculates how many Imes two cell types interact in diûerent images and creates an 

average of these interacIons. The cells were then grouped based on the previously generated 

cluster.  

We can visualize the <from_label= (cell type from which the interacIon originates) and the 

<to_label= (cell type which the interacIon is desIned to). The <sigval= indicates whether the cells 

signiûcantly interact or avoid each other, or if there is no staIsIcally signiûcant interacIon or 

avoidance. 

 
Figure 23: Interaction graph. It shows the interactions between cell types, <from= cell type on X-axis and <to= cell type on 

Y-axis. Red tyles indicate cell type pairs that were detected to significantly interact on many images, while blue tyles 
show cell types that avoid each other in many images.  

 

In the interacIon graphs, we observed that the <Endothelium/Pericytes= and 

<Endothelium/Pericytes/FLS= clusters interacted together and within themselves, while the 

<Stroma= cluster interacted only with itself.  

 

Another possible way of interacIon analysis was to use the patch method (Figure 24). The 

hypothesis to be tested in this approach is whether at least n cells of a certain type (to_label) are 

located around a target cell type (called "from_cell"). In summary, this approach checks whether a 

speciûc number of cells of a certain type are located around a target cell of another type.  

2

2
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The <patch_size= parameter in the funcIon speciûes the number of cells that must be present in the 

group (or "patch") for the hypothesis to be considered true. 

 
Figure 24: Interaction graph based on patch method. It shows the interactions of n cell types (to_label) on Y-axis around 
a target cell type (from_label) on X-axis. Red tiles indicate cell type pairs that significantly interact in many images, while 

blue tiles show cell types that avoid each other in many images. 

 

The graph is comparable with the one generated before, shown in Figure 22. We observed that there 

is a strong interacIon between <Endothelium/Pericytes/FLS= with the <Endothelium/Pericytes= and 

<Endothelium/Pericytes/NGFR+= clusters.  

 

4.2.2 Semi-Supervised Analysis 

The semi-supervised approach is based on ground truth labelling and random forest classiûcaIon.  

The cytomapper package provides a funcIon that allows gaIng cells based on their marker 

expression and visualizaIon of selected cells directly on images. 

In this project, the choice of clusters was aimed at idenIfying cells expressing two cytokines: TNF-S 

and IL-1³. 

The generated clusters were created taking into consideraIon these speciûc cells populaIons: FLS, 

monocytes, macrophages, T cells, endothelial cells, pericytes and stroma, detailed as following:  

- FLS = IL-1³/TNFS negaIve + Podoplanin posiIve 

- IL-1³_Peri_Endo = IL-1³ posiIve + CD140ab/SSMA posiIve 

- TNFS_Peri_Endo = TNF-S posiIve + SSMA/CD140ab posiIve 

2
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- Peri_Endo = IL-1³ /TNF-S negaIve + CD140ab/SSMA posiIve 

- IL1³_T = IL-1³ posiIve + CD3 posiIve 

- TNFS_T = TNF-S posiIve + CD3 posiIve 

- T = IL-1³/TNF-S negaIve + CD3 posiIve 

- Mono_IL1³ = IL-1³ posiIve + HLADR/CD14 posiIve 

- TNFS_Mono = TNF-S posiIve + HLADR/CD14 posiIve 

- Mono_Macro = IL-1³/TNF-S negaIve + HLADR/CD14 posiIve 

- Stroma_Col1 = IL-1³/TNF-S negaIve + COL1 posiIve 

- Stroma_Fibro = IL-1³/TNF-S negaIve + FibronecIn posiIve 

 

 
Figure 25: Gating strategy. The image illustrates the gating strategy for the IL1³_T cluster, representing T cells positive 
for IL-1³ expression. In the first plot, all cells expressing IL-1³ are considered, followed by selection for double negativity 

for CD14 and HLA-DR, as well as for SSMA and CD140ab in subsequent plots. Plot 4 focuses on CD3-positive cells, 
resulting in the isolation of T cells expressing IL-1³. 

 

AddiIonally, we generated a cluster called <undeûned= to include all cells that we are not speciûcally 

considering. 

 

Firstly, we generated a table that idenIûes the labeled cells in each paIent (Figure 26). Then, a 

random forest classiûer was trained to classify all remaining cells as unlabelled cells. 
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Figure 26: Table based on labeled cells. 

 

The data generated by the random forest were used to predict the cell phenotypes of the unlabelled 

data. The graph below illustrates the probability of ûnding each cell type in each cluster. To proceed 

with the analysis, it is important to choose a threshold that considers only cells aker this parameter 

(Figure 27). Thus, we selected a maximum classiûcaIon probability threshold of 0.4 (40%), because 

all clusters were considered without excluding any. 

 
Figure 27: Graphs of maximum probability. Each cluster is represented by a specific colour, with its probability spread 

along the X-axis. The selected maximum classification probability threshold is 0.4 (40%) because it takes in 
consideration the presence of all clusters. 

 

Thanks to the creaIon of these clusters through cell gaIng, it is now possible to generate the same 

graphs that were previously created using the unsupervised approach, but this Ime using the semi-

supervised one.  
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The single-cell visualizaIon was created through a fastMNN-corrected UMAP, based on semi-

supervised generated clusters (Figure 28). 

 
Figure 28: fastMNN-corrected UMAP colored according to cell clusters as indicated. 

 

Clusters can be visualized in each ROI, where each point represents an individual cell belonging to a 

speciûc cluster (Figure 29). 

 

 

 

 

 

 

 

 

 

 

 



 47 

 
Figure 29: Distribution of cells within specific cluster. Each image represents different ROIs of patients. 

 

To visualize the mean marker expression per cell type, we used Z-score scaling. As done previously, 

we generated two graphs: one with all markers used in the panel (Figure 30A) and the other showing 

the markers of interest (Figure 30B). 
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Figure 30: Heatmap with Z-score scaling. (A) Z-score scaling with all markers. (B) Z-score scaling with the markers of 

interest. The upper part of each heatmap indicates the number of cells (ncells), with blue representing fewer cells, purple 
representing a medium quantity, and yellow representing a high quantity of cells; it also indicates celltype, with each color 

corresponding to a different cluster. The dendrograms at the top and left represent the similarity between cell numbers 
and marker expression. In red are indicated markers with higher expression, while in blue markers with lower expression. 

 

We found, as shown in Figure 27B, that the expression of CD3 marker was detectable in three 

clusters <TNFS_T= (red), <T= (cyan) and <IL1³_T= (light brown), as expected because CD3 is a marker 

of T cells and these clusters were created by considering only cells that were namely T cells, that 

might or not express TNF-S and IL-1³ cytokines. 
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To display the frequencies of cell types per sample, we generated two diûerent bar plots with the 

same characterisIcs as the graphs shown in Figure 22A and 22B. The ûrst plot (Figure 31A) has the 

indicaIon (OA) on X-axis, and the second plot (Figure 31B) has the paIent_id on X-axis. In both cases, 

the Y-axis is represented the percentage of each cell type.  

 
Figure 31: Bar plots of cluster abundance. (A) Bar plot based on indication (OA). (B) Bar plot based on patient_id. In 

both bar plots, each color is associated with cluster names. 

 

In both graphs, we found several undeûned cells (shown in grey). This was expected because we 

gated only speciûc cell populaIons (FLSs, monocytes, macrophages, T cells, endothelial cells, 

pericytes and stroma), so, all remaining cells were classiûed as <undeûned=.  

AddiIonally, we observed a similar distribuIon of cell types between paIents, except for the 

<Strom_Col1= (pink), <IL1³_Peri_Endo= (ocher) and <FLS= (dark brown) clusters.  

 

(A) 

(B) 
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This analysis concludes with the spaIal analysis, focusing on the interacIon between all cell types 

in the dataset, with the same criteria previously described (Figure 32). 

 
Figure 32: Interaction graph. It shows the interactions between cell types, <from= cell type on X-axis and <to= cell type on 
Y-axis. Red tyles indicate cell type pairs that are detected to significantly interact on many images, while blue tyles show 

cell types that avoid each other in many images. 

 

In Figure 32 is possible to observe that <Macro_IL1b=, <Mono_Macro=, and <TNFS_Mono= clusters 

interact together, while <Stroma_Col1= and <Stroma_Fibro= clusters interact only with their 

respecIve labels. 

 

In addiIon, the patch method (Figure 33) was used to check whether a speciûc number of cells of a 

certain type (to_label) were located around a target cell of another type (from_label). 

 

 

 

 

  

2
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Figure 33: Interaction graph based on patch method. It shows the interactions of n cell types (to_label) on Y-axis around 
a target cell type (from_label) on X-axis. Red tiles indicate cell type pairs that significantly interact in many images, while 

blue tiles show cell types that avoid each other in many images. 

 

Figure 33 is comparable with the one generated before (Figure 32). We found a strong interacIon 

between the <Mono_Macro= cluster with the <Macro_IL1³= and <Peri_Endo=. 

 

 
  

2
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5. DISCUSSION 

OA typically targets the synovium or synovial membrane, a highly vascularized and innervated 

connecIve Issue which regulates synovial ûuid volume and composiIon, and chondrocytes 

maintenance. In OA paIents, the synovium becomes thicker, more vascularized and there is an 

increase inûltraIon of inûammatory cells1,15. Among them, FLSs, lymphocytes, macrophages, 

pericytes, and nerve ûbers are the predominant synovial cells, playing a crucial role in OA 

pathogenesis, thanks also to the involvement of soluble pro-inûammatory mediators and cytokines, 

which together contribute to the inûammatory process19,3. 

 

IdenIfying the aforemenIoned speciûc cell populaIons linked to OA pathogenesis is crucial for 

understanding the disease's cellular mechanisms and developing personalized therapies. Recent 

advancements in omics technologies, such as IMC, have shown great promise in understanding 

disInct cell populaIons within joint Issues of OA paIents, paving the way for personalized therapy 

approaches43. 

 

Thus, this thesis aims to develop a bioinformaIcs pipeline for analysing IMC data, with the goal of 

elucidaIng cell composiIon and their spaIal distribuIon in OA synovial samples.  

IMC is an advanced technology enabling precise assessment of complex phenotypes and immune 

interacIons in Issue microenvironments. It can overcome the limitaIons of tradiIonal 

immunohistochemical analysis, such as the limited number of markers that can be visualized. IMC 

overcome this issue allowing the analysis of over 40 markers simultaneously and at single-cell level, 

thereby minimizing background noise and signal overlap43. 

 

We designed an anIbody panel composed of 33 anIbodies, able to characterize the inûltrated 

immune cells into synovial Issue as well as FLSs. The bioinformaIc pipeline was build using IMC data 

from 6 OA samples. For each paIent we selected 2 ROIs, and consequenIally we analysed the data 

using the <IMC SegmentaIon Pipeline= provided by BodenmillerGroup.  

IniIally, a heatmap was created to visualize the mean expression of all markers. However, as shown 

in Figure 10, we found a high variability among paIents, thus emphasizing the need for batch 

correcIon to eliminate non-biological diûerences between samples and enhance cell phenotype 

detecIon. The fastMNN correcIon method harmonized the data by idenIfying MNN among cells 
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from various samples and thus correcIng diûerenIal expression between batches. Subsequently, in 

the UMAP (Figure 15), all paIents were analyzed together; the expression of markers in Figure 16B 

shows their integraIon without disInct clusters being formed. 

 

To build a bioinformaIc pipeline, an important step involves cell phenotyping. For this purpose, we 

employed two diûerent methods: unsupervised and semi-supervised. In both cases, we generated 

the same graphs to compare the outcomes of these two methods. 

Using an unsupervised approach, we generated 17 clusters with the PhenoGraph funcIon (Figure 

17), in each cluster cells were grouped basing on their similarity in marker expression or their 

proximity in low-dimensional space, without any manual intervenIon or predeûned criteria. These 

17 clusters were then named based on marker expression shown in the heatmap (Figure 18), to 

idenIfy populaIons of our interest such as FLSs, monocytes, macrophages, T cells, endothelial cells, 

pericytes and stroma. 

On the other hand, in semi-supervised approach, cells were gated manually based on their marker 

expression and visualized directly on images. Using the cytomapper funcIon, we generated 12 

clusters, focusing on speciûc cells populaIons, such as FLSs, monocytes, macrophages, T cells, 

endothelial cells, pericytes and stroma, along with the expression of TNF-³ and IL-1³ in these 

populaIons. 

In both cases, a cluster called <undeûned= was created to group all cells that were not considered 

or could not be disInguished. 

 

We used Z-score scaling to be[er appreciate the expression of markers in both unsupervised and 

semi-supervised approaches. In Figures 21B and 30B, we reported that the expression levels of the 

following markers such as COL-1, HLA-DR, SSMA, IL-1³, FibronecIn, Podoplanin, TNF-S, CD14, 

CD140ab, and CD3, did not change in both analyses. These markers idenIfy our populaIons of 

interest (FLSs, monocytes, macrophages, T cells, endothelial cells, pericytes and stroma). However, 

we noted that these cells were be[er represented in the semi-supervised approach, which also 

shows the expression of the two cytokines of interest IL-1³ and TNF-S. In contrast, when using the 

unsupervised approach, the expression of the two cytokines is not retained in the iniIal heatmap 

generated aker applying the PhenoGraph funcIon, as depicted in Figure 18. This iniIal heatmap 

shows that the cytokine expression data is lost, making it challenging to discern meaningful pa[erns. 

However, as shown in Figure 21B, the expression of these cytokines does reappear even within the 
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undeûned cluster. This reappearance highlights a signiûcant issue with the unsupervised approach: 

it is diûcult to accurately disInguish and idenIfy the speciûc populaIons of interest. The inability 

to discriminate between diûerent populaIons correctly can lead to challenges in interpreIng the 

data and idenIfying the correct populaIon. 

We also noted that FLSs were present in the heatmap generated by the semi-supervised approach; 

in contrast, in the unsupervised approach, the expression of these cells was found in the undeûned 

clusters, indicaIng that with the unsupervised approach we may lose some important informaIon.  

However, these results suggested that both approaches can idenIfy speciûc cells populaIons that 

are similar, taking into account, as shown in Figures 22 and 31, that the frequencies of the clusters 

in each paIent were not homogeneous. This may be due to (a) the small number of ROIs chosen for 

each paIent, and (b) the severity of OA that was unknow, which may be an important parameter to 

consider before applying a bioinformaIc analysis. In line, Mimpen et al. (2023), reported diûerent 

frequencies of immune and myeloid cells in 10 paIents with advanced knee OA disease by 

immunoûuorescence. They also observed a predominance of macrophages and T cells in each 

paIent, and they were able to disInguish FLSs according to the posiIve or negaIve expression of 

CD34, CD90, Podoplanin and FAP markers59,60.  

As conûrmed by Zou et al. (2023) and Mimpen et al. (2023), FLSs, macrophages and T cells are the 

most prevalent cells present in the synovium of OA paIents. These cells play a crucial role in the 

inûammatory process aûecIng the synovial membrane. Speciûcally, FLSs and macrophages secrete 

large amounts of inûammatory factors, such as IL-1³ and TNF-S, which are two of the most prevalent 

cytokines that promote synovial inûammaIon and possibly lead to carIlage lesions60,61. Our results 

showed that these two cytokines are expressed by pericytes, endothelial cells, monocytes and T cells 

populaIons17,39. In parIcular, as shown in Figure 31, by using the semi-supervised approach, the 

populaIon most representaIve of IL-1³ expression consists of macrophages. However, TNF-S shows 

a greater prevalence in the T cell populaIons, suggesIng that while it is distributed among various 

cell types, its expression is more pronounced in T cells.  

Therefore, by idenIfying more speciûcally which types of cells express these molecules, IL-1³ and 

TNF-S can be targeted therapeuIcally, as the within the scope of SINPAIN project. 

In addiIon, it could be interesIng to be[er characterize the predominant cells populaIon using 

speciûc markers and create speciûc clusters in the semi-supervised approach, as further prospecIve 

of this study.  
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Furthermore, based on our results, we can assess how the unsupervised approach is more suitable 

for exploratory analysis given its characterisIc of random generaIon of clusters without the need of 

any input. Therefore, since no speciûc target is wanted, this method is perfectly suitable for the task. 

On the contrary, if the target is known, the semi-supervised approach may signiûcantly outperform 

the unsupervised method, with the risk of losing some important informaIon, regarding the co-

expression of some markers on speciûc cells that we were not expecIng. This method would provide 

informaIon quicker and in a more speciûc way since inputs and outputs have already been given 

and the algorithm's only task is to ût the single-cell data into our indicaIons. 

 

Another important aspect in the bioinformaIc pipeline to be considered, is the analysis of single 

cells in their spaIal Issue. Ours allows for the analysis of interacIons among all cell types using both 

semi-supervised and unsupervised approaches. 

The interacIon analysis shown in Figures 23, 24, 32 and 33 calculated the frequency of interacIons 

between two cell types across diûerent images by generaIng at the end an average of these 

interacIons. The cells are then grouped based on the previously generated clusters. In these graphs, 

it is possible to observe that most clusters interact primarily with their respecIve cluster. However, 

a few clusters interacted with other ones, such as the <Macro_IL1³=, <Mono_Macro=, and 

<TNFS_Mono= clusters in the semi-supervised graph, and the <Endothelium/Pericytes= and 

<Endothelium/Pericytes/FLS= clusters in the unsupervised graph.  

For the purposes of this thesis, the interacIon analysis was suûcient to compare the two 

approaches. However, spaIal analysis itself is far more intricate and precise, oûering the potenIal 

to create more detailed and informaIve graphs aimed at achieving a deeper analysis.  

SpaIal analysis extends beyond examining interacIons between cell types. There are several 

advanced approaches that can provide a more comprehensive understanding of cellular behavior 

and interacIons within a sample. For instance, spaIal community analysis can reveal how cells form 

disInct communiIes are spaIally organized, providing insights into the structural organizaIon of 

Issues. Cellular neighborhood analysis also allows for the examinaIon of the immediate 

microenvironment of each cell, idenIfying how neighboring cells may inûuence each other9s 

behavior and funcIon. AddiIonally, spaIal context analysis can uncover pa[erns of cell distribuIon 

and localizaIon within the broader Issue context, highlighIng areas of cellular cooperaIon or 

conûict. 
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These sophisIcated spaIal analyses are crucial for a detailed and comprehensive view of cellular 

interacIons and behaviours. They enable researchers to idenIfy precise pa[erns and intricate 

networks that simpler methods might overlook. Emphasizing the importance of these sophisIcated 

spaIal analyses underscores their potenIal to provide signiûcant insights and drive advancements 

in the ûeld.  

 

In conclusion, we have developed a detailed bioinformaIcs pipeline capable of deep 

characterizaIon of the synovial membrane. This serves as a fundamental step for conducIng further 

analysis on larger datasets to gain a deeper understanding in OA pathogenesis. Moreover, exploring 

interindividual variability among paIents with the same disease could elucidate speciûc cell 

populaIons crucial to the pathogeneIc process. This could lead to the development of new care 

strategies, predicIon of treatment response, and guidance for precision medicine treatment plans. 
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