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ABSTRACT

Osteoarthritis (OA) predominantly affects diarthrodial joints and is one of the leading causes of joint
pain and disability. Approximately 240 million individuals currently suffer from this condition, a
number expected to rise by 2030 due to the aging population. OA typically targets the synovial
membrane, which is a highly vascularized and innervated connective tissue crucial in regulating
synovial fluid volume, composition, and chondrocytes maintenance. In OA patients the synovium
undergoes significant changes, becoming thicker and more vascularized, with an increased
infiltration of inflammatory cells, including fibroblast-like-synoviocytes, playing a crucial role in OA
pathogenesis, due to the release of pro-inflammatory mediators.

Identifying specific cell populations involved in OA pathogenesis is crucial for understanding the
disease's cellular mechanisms and developing personalized therapies.

This thesis aims to develop a bioinformatics pipeline to characterize, by Imaging Mass Cytometry
(IMC) data, cellular composition and spatial distribution in OA synovial samples. IMC is a high-
throughput technology enabling the detection of more than 40 biomarkers simultaneously on a
tissue slice, overcoming limitations raised by immunohistochemistry and immunofluorescence, such
as background noise and signal overlap. To develop the bioinformatic pipeline, we analyzed synovial
biopsies from 6 OA patients by employing a panel of 33 antibodies to stain the regions of interest
(ROI) for each patient. Two ROIs were selected for bioinformatic analysis. Following the visualization
of mean marker expression and the application of fastMNN correction to remove non-biological
differences between samples, two approaches, unsupervised and semi-supervised, were employed
for the analysis of immunophenotype. Both approaches identified similar specific cells populations,
though the frequencies of clusters varied among patients due to the different stages of the disease,
namely early and late onset. Our findings would suggest that the unsupervised approach is more
suitable for exploratory analysis without the need of any input, due to its characteristic of randomly
generating clusters; while the semi-supervised one is suggested when the target is known, albeit
with the risk of missing some important information. Spatial analysis of cells also represents an
important step that requires further investigation, being crucial for a detailed and comprehensive
understanding of cellular interactions and behaviors. The development of a detailed bioinformatics
pipeline capable of in-depth characterization of the synovial membrane would serve as a
fundamental step for conducting further analysis on larger datasets, ultimately aiming to gain deeper

insights into OA pathogenesis.
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1. INTRODUCTION

1.1 Synovial Joint Anatomy

The joint is a region of the skeleton where two or more bones interact and articulate. Its primary

function is to allow movements between bones and facilitate growth in the early phase of life.

Inflammatory processes in joint diseases often target synovial joint which is composed of:

1) The articular capsule, which surrounds the joint. It is constituted by the fibrous layer and the

2)

3)

synovial membrane, also known as synovium. The fibrous layer connects the bones and
supports the other layer, while the synovial membrane both produces and absorbs synovial
fluid facilitating the nutrient exchange between the blood and the joint.

The articular cartilage plays a crucial role in protecting our joints from mechanical stress and
impact. It is covered by a thin layer of hyaline cartilage.

The synovial fluid, located within the joint cavity of a synovial joint, is crucial for lubrification,
nutrients distribution and shock absorption

(https://www.ncbi.nlm.nih.gov/books/NBK507893/) (Figure 1).
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Figure 1: Main structural features of synovial joint.

1.1.2 Synovial Membrane

The synovial membrane or synovium is important for regulating the volume and composition of

synovial fluid as well as maintaining chondrocytes. It is a connective tissue that covers the

diarthrodial joints, surrounds tendons and forms the lining of bursae and fat pads, facilitating the

movement of non-deformable tissues2. This membrane is crucial for the overall health and function



of joints due to its high vascularity, containing blood and lymphatic vessels, as well as being
innervated?3.

The synovium consists of two main layers: the outer layer, also known as the subintima or sublining
layer, and the inner one, referred to as the intima or lining layer.

The subintima layer is constituted by different types of connective tissue, including fibrous, adipose,
and areolar tissues among the others, while the intima layer is located near to the joint cavity and it
consists of 1-3 layers of synovial cells, namely type A and type B synoviocytes+®.

Type A synoviocytes, also known as synovial macrophages, play a crucial role in clearing excess
materials and pathogens from the joint. They also produce and secrete enzymes, cytokines and
chemokines that contribute to inflammation, cartilage degeneration and immune response.
Although predominantly situated in the intima layer, type A synoviocytes can also be found in few
numbers within the subintima layer.

Type B synoviocytes, or fibroblast-like synoviocytes (FLS) cells, produce hyaluronic acid (HA). They
act as a barrier to maintain the synovial fluid in the capsule, and they regulate and produce

extracellular matrix (ECM) components®37,

1.2 Osteoarthritis

Osteoarthritis (OA) is one of the most prevalent causes of joint pain and disabilityl. Currently,
approximately 240 million people worldwide suffer from symptomatic OA, which occurs in
individuals aged 60 years and older, with women being more susceptible compared to men&-19,

The prevalence of this disorder has been constantly increasing over time and is expected to become
one of the major causes of disability by 2030, correlating with the increase in the aging
population®12,

In general, OA is attributed to a breakdown in the repair of joint damage, resulting from stresses or
some tissue abnormalities®. This disorder can manifest in various regions of the body, including the
knee, hip, hand, foot, and ankle32. Clinical manifestations include pain, stiffness, reduced joint
motion and function, swelling, and muscle weakness. The long-term consequence involves reduced
physical activity, deconditioning, impaired sleep, fatigue, depression, and disability®2.

Several risk factors can increase the possibility of developing OA, including older age, sex, overweight
or obesity, as well as factors related to bone and joint shape, muscle strength, varus or valgus
alignment, knee injury, and occupational factors involving repetitive activities. Additionally, genetic

factors also may contribute to approximately 30-65% of cases'91314,



1.3 Osteoarthritic Synovium

In healthy individuals, the synovium is a well vascularized fibro-collagenous tissue consisting of 1-3
layers of heterogenous cells fused together such as adipocytes, fibroblasts, mast cells, and
macrophages. OA patients develop some abnormalities such as thickening of the lining layer,
increased vascularity, and infiltration of inflammatory cells¥>. Hence, it is evident that the synovium

assumes a pivotal role in the pathophysiological mechanisms underlying OA3.

There are two stages of OA development: early and late stages.

The early stage is characterized by increased cell proliferation, macrophage infiltration and
angiogenesis. Lymphoid aggregates are present in OA late stage, a feature absent both in healthy
individuals and in the early stage®>. However, synovial inflammation is present in both stages of OA?®.
When the synovium becomes inflamed, FLSs proliferate leading to hyperplasia in the lining layer, and
macrophages and T cells accumulate in the sublining layer, creating a vascularized fibrotic
environment. Conversely, B cells, mast cells and plasma cells are less abundant®*’,

In general, macrophages aggregate and form multinucleated giant cells (MGCs) initiating the innate
immune response and inducing the release of pro-inflammatory cytokines!®. Also, FLSs and
chondrocytes contribute to the development of inflammation. FLSs release the pro-inflammatory
cytokines interleukin-1 beta (IL-1B) and tissue necrosis factor alpha (TNF-a), and the chondrolytic
mediator such as matrix metalloproteinase (MMPs), leading to cartilage degradation. Additionally,
FLSs are responsive to cytokines and toll-like receptors (TLRs) whose expression in chondrocytes may

be upregulated, triggering a catabolic cascade®®.

1.3.1 Synovial Cells in OA

The most represented synovial cells are: FLSs, lymphocytes, macrophages, pericytes and nerve

fibers.

FLSs

FLSs are specialized mesenchymal cells that facilitate the cartilage lubrication through the synthesis
of synovial fluid, enriched in lubricin and HAY’.

FLSs express surface markers, including intercellular adhesion molecule (ICAM)-1, CD44, and B1

integrin. When FLSs are activated, they express CD90 (sublining) and Podoplanin (lining) markers®®;



in particular, CD90 is expressed also in mesenchymal stem cells (MSCs), and the CD90* FLSs
population causes an increase of inflammation. Podoplanin is also a tumor biomarker, and it can be
used to distinguish two types of FLSs populations based on the positive or negative expression of
CD90. Specifically, the CD90*Podoplanin®* FLS population is associated with an inflammatory state, in
contrast to those cells lacking CD90 expression (CD90 Podoplanin®)?%-22,

FLSs expressing specific markers have been already associated with different pathological conditions.
Among them, CD34 is a surface protein, and it is used to distinguish three different cellular
populations: (1) CD34°CD90* cells are present in the intima layer of patients with rheumatoid
arthritis (RA), (2) CD34°CD90" cells surround blood vessels in the subintima layer of OA patients, and

(3) CD34" cells are present in both RA and OA patients in the synovial membrane??2.

LYMPHOCYTES

Immune infiltration of T and B cells has been observed in inflamed OA tissues.

Specifically, T cells resulted to be increased in peripheral blood, synovial fluid, and synovial
membrane of OA patients, suggesting a potential role in OA pathogenesis. Among T cells (CD3"),
CD4* and CD8* T subsets represent the most representative constituent of the synovial infiltrate
(22%) in OA synovium?3,

B cells have been indicated as possible contributors to OA pathogenesis by producing
autoantibodies, presenting autoantigens to autoreactive T cells, secreting pro-inflammatory

cytokines and chemokines, and amplifying the inflammatory response?*%.

MACROPHAGES

Macrophages represent 12-40% of synovial immune cells; specifically, those expressing CD14*CD16*
are the most abundant and active in the synovium!’. Macrophages are classified into pro-
inflammatory type 1 (M1) and anti-inflammatory M2 cells!®?. The typical markers of M1 cells are
CD11c and CD16 ones, while the M2 cells express CD163 and CD14 markers!”?’,

In OA patients, the balance between M1 and M2 cells is altered, since M1 cells are the most
prevalent and secrete MMP-1, aggrecans, cyclooxygenase, pro-inflammatory cytokines, such as IL-

1B, IL-6 and TNF-a, promoting then cartilage degradation and OA progression®1,



PERICYTES

Pericytes are specialized cells crucial for vascular function since they regulate angiogenesis, provide
mechanical support and stability to vessels, and control immune response, fibrosis, and
inflammation?®2°. Due to these functions, pericytes are found in specific areas, such as precapillary
arterioles, capillaries, and postcapillary venules?83°,

Pericytes are characterized by the expression of specific markers including CD146, PDGFR (platelet-
derived growth factor receptors) or CD140a-b, NG2 and alpha-smooth muscle actin (a-SMA)?>3°, In
OA patients, the higher PDGFR expression is associated with aberrant subchondral angiogenesis,
contributing to disease progression?>31, Pericytes also play an important role in the cartilage
development, healing of osseocartilaginous tissues, and pathological processes related to cartilage
formation.

These cells can undergo osteogenic, chondrogenic, fibrogenic, and adipogenic differentiations3°, and
can originate from various cell types including smooth muscle cells, fibroblasts, endothelial cells,

and bone marrow?8.

NERVES FIBERS

The nerve growth factor (NGF) is a neurotrophic factor produced by nervous system cells,
lymphocytes and FLSs. It binds to the NGF receptor (NGFR), expressed in the cells of nervous system.
NGF overexpression cause by the pro-inflammatory cytokines (as TNF-a and IL-1pB) is associated with
inflammation and amplified pain in arthritic joints, in RA patients and, to a lesser extent, in OA
ones3233,

Synovial tissue contains two types of nerve fibers, namely sympathetic and sensory nerve fibers,
that innervate the synovium.

Sensory nerves fibers express calcitonin gene-related protein (CGRP) which co-localizes with NGF in
osteochondral channels3*3°. Upregulation of NGF leads to increased CGRP expression, resulting in
amplified sensory nerve fiber density and exacerbating pain and inflammation in OA patients3436,
Instead, sympathetic nerve fibers express tyrosine hydroxylase (TH) and are closely associated with
blood vessels. Their presence is more abundant in OA patients compared with RA ones®®. It has been
shown that macrophages positive for TH and ADRB2 promote the shift from M1 toward M2
phenotype, with ADRB2 being an adrenergic receptor that activates the anti-inflammatory response

in immune cells®’.



In conclusions, single-cell technologies facilitate the identification of the diverse immune and
structural cell landscape and composition of the synovium32, revealing heterogeneous and disease-

specific cell patterns, which may be comprehensively appreciated by exploiting -omics techniques.

1.3.2 Soluble Inflammatory Mediators in OA

Soluble pro-inflammatory mediators and cytokines play an important role in OA pathogenesis.
Regarding cytokines, they can be classified in catabolic, anabolic, and regulatory types3, having a

central role in the inflammatory process?®.

Catabolic cytokines refer to signalling molecules that promote the breakdown of tissues, such as
cartilage; this is a frequently observed condition in OA3%, Indeed, these soluble mediators are
increased in OA synovial fluid, synovial membrane, cartilage, and subchondral bone, having a
synergistic effect on signaling pathways that increase inflammation and cartilage degradation®?.
Among them, IL-1B and TNF-a are pro-inflammatory mediators known to be involved in OA; other
cytokines such as IL-6, IL-15, IL-17, and IL-18 play also a significant role3°.

IL-1B is produced by synovial macrophages and chondrocytes, leading to the suppression of ECM
production and to the increase of MMP-1, which induces the degradation of cartilage®*°.

Anabolic cytokines, such as transforming growth factor beta (TGF-B) and insulin-like growth factor-
1 (IGF-1), are signalling molecules that promote tissue growth and repair, playing a role in
maintaining the health and function of tissues like cartilage in joints>“°. In particular, TGF-B regulates
the formation or degradation of ECM, maintaining its homeostasis. In patients affected by OA, a
deficiency of anabolic cytokines is often reported, with an increase in cartilage degradation and
damage®.

Regulatory cytokines protect the joint from degradation; for example, IL-4, IL-10, and IL-13 exert
anti-inflammatory properties on synovial macrophages and up-regulate the production of the
natural inhibitors of catabolic cytokines'3. IL-4 and IL-10 have also a chondroprotective effect by
inhibiting the production of MMPs as well as downregulating the synthesis of TNF-a, IL-1B, and IL-6.
Additionally, IL-10 stimulates the synthesis of the IL-1B antagonist (IL-1Ra) and the tissue inhibitor

of metalloproteases-1 (TIMP-1)%.



In OA patients an imbalance between pro-inflammatory and anti-inflammatory molecules is
recurrent, with a bias towards the inflammatory side; thus, it is important to comprehensively

analyze these soluble factors to get deeper insights in disease pathogenesis'3.

1.4 OA Treatment

OA treatments involve the use of non-pharmacologic or pharmacologic interventions®!.
Non-pharmacological therapies, including exercise and dietary adjustments, not only aimed at
alleviating pain but also in reducing the risk of developing OA, while enhancing physical function®4%,
On the other hand, current pharmacological options include acetaminophen, nonsteroidal anti-
inflammatory drugs (NSAIDs) for treatment of moderate to severe symptoms, opioids for pain
reduction, anti-inflammatory cytokines, methotrexate, and intraarticular (lA) therapies such as
glucocorticoid or HA injections directly into the joint®4%,

In those patients that do not respond adequately to the previous treatments, the only option is joint
replacement surgery which is also the most invasive and less economically convenient®4,

Currently, FDA-approved disease-modifying drugs for OA capable of alleviating pain and impeding

joint degradation are lacking®?.

Identifying specific subpopulations linked to the pathogenesis of OA is crucial for enhancing our
comprehension of the cellular mechanisms underlying the disease and for developing personalized
therapeutic interventions for OA.

Recent advancements in omics sciences and high-throughput omics technologies have the potential
to significantly enhance our understanding of the distinct cell populations present in the joint tissues

of each OA patient, paving the way for personalized therapy approaches*.

1.5 Precision Medicine

In this context, the precision medicine approach offers the opportunity for patient-specific
evaluations to select the best treatments or to study the pathological mechanisms for the
development of tailored therapies. This approach aims to integrate high-throughput biological data
generated through omics techniques with environmental and lifestyle factors to obtain a complete
individual profiling able to provide patient-specific details that can be used as diagnostic, prognostic,

and treatment response biomarkers or therapeutic targets**4°.
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Various authors describe precision medicine in different ways, characterizing it as a discipline that:

a) Customizes treatments for individual patients based on their unique characteristics,

including genetics, biomarkers, phenotypic traits, and psychosocial factors, which
differentiate them from others with similar clinical conditions.

b) Categorizes patients into novel subgroups to identify common disease susceptibility and

manifestation patterns within these subcategories, thereby enabling more precise

therapeutic interventions?®.

In summary, precision medicine aims to create personalized treatments for everyone®’, recognizing
that every patient is unique, and what works for one person may not work for another*®,

For this purpose, omics approaches permit a patient-specific in-depth exploration of biological
molecules and their interactions within biological systems. These approaches include genomics,
transcriptomics, proteomics, metabolomics, and epigenomics.

Through omics investigation, substantial amounts of data are generated, far exceeding our capacity
to process it. Many groups have developed tools aimed at connecting these gaps, addressing the
need for instruments capable of analyzing and sorting the data. Bioinformatics techniques can help
in the analysis of this vast amount of data®. The analysis of these data allows us to better understand
disease pathogenesis, with the potential to develop more accurate predictive or prognostic models.
Furthermore, these approaches enable us to anticipate patient responses to specific treatment

protocols#°0:51,

1.6 Imaging Mass Cytometry

For many years, immunohistochemistry (IHC) and immunofluorescence (IF) have been used for
diagnosis of various diseases. Both IHC and IF utilize a specific primary antibody that binds to the
antigen of interest. Subsequently, a secondary antibody is added, which binds to the primary one.
The difference between these two approaches lies in their detection methods. In IHC the detection
can be chromogenic or fluorogenic, whereas in IF involves the detection of a fluorescent label
(fluorophore). Therefore, the secondary antibody can be linked to an enzyme that catalyzes a
chromogenic reaction, or to a fluorophore that is observed under a fluorescent microscope.

Typically, we can use up to 5-7 different markers together, but this is limited by potential overlap

between the antibodies, the quality and concentration of the antibodies, and the unstable staining

11



that may be occur. Additionally, the signal from fluorescent probes diminishes over time with

exposure to light, a phenomenon known as bleaching>>>3.

Imaging Mass Cytometry (IMC) is an innovative multidimensional technique, representing a cutting-
edge approach for studying complex tissue sections®*. It configures as a combination between IHC
and Mass Cytometry, allowing the simultaneous staining and analysis of markers in both formalin-
fixed and paraffin-embedded (FFPE) tissues and frozen tissues, facilitating the study of various
pathological processes and diseases>™°.

As mentioned above, compared to the existing techniques, IMC adds a step forward permitting to
detect and visualize simultaneously 35-40 different markers on a single tissue slide. Indeed, each
antibody used for tissue staining utilizes stable metal isotopes linked with metal-chelating polymer
chains rather than fluorophores or enzymes. Detection and quantification of metals are conducted
using a time-of-flight (TOF) mass spectrometer>*, which, due to its high resolution, allows precise
localization of proteins within cellular compartments such as nucleus, cytoplasm, or cellular
membrane®®.

Since IMC can be performed on FFPE sections, it holds the potential for retrospective histological
analysis of patients with known outcomes. Ultimately, leveraging IMC for retrospective analysis has
the potential to refine our understanding of disease processes and improve patient stratification,
ultimately leading to more targeted and personalized treatment approaches®>>’,

In particular, the advantages of IMC include high multiplexing, absence of autofluorescence, low
interchannel crosstalk, stable staining, high quantitative, and high dynamic range. These attributes
allow for a more in-depth study of specific diseases. In addition, with bioinformatic analysis, IMC
enables the creation of different clusters (clustering approach), the study of the interactions
between cells and cells populations (spatial analysis), and the identification of specific cell

phenotypes (cell phenotyping).

12



2. AIM

This internship was carried out at the Immunomics laboratory (Head Prof. Annalisa Chiocchetti), and
it is part of the SINPAIN project (GA n.101057778 HORIZON-HLTH-2021-TOOL-06-02 “A game
changer for the treatment of osteoarthritis: a cost effective combined advanced therapy to treat knee
osteoarthritis”), which aims to develop a siRNA-based therapy pipeline for treating different stages
of knee OA. This pipeline will be combined with current therapies and designed step-by-step to
achieve successful management of inflammation and innervation therapy for the treatment of early
and later stages of OA.

Within the SINPAIN project, our task is set on point a bioinformatic pipeline to analyze IMC data
obtained from the staining of synovial samples from patients affected by OA.

We set up the antibody panel to reach optimal antibodies concentration, proceeding then to the
samples acquisition and analysis, exploiting bioinformatic tools. Specifically, the comparison of
different bioinformatic approaches represents the main focus of this thesis. The proposed pipeline
will find application in future studies involving a bigger cohort and has the potential to improve the
current knowledge about OA pathogenetic mechanisms and progression with an innovative

approach.
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3. MATERIALS AND METHODS

3.1 Human Specimens

Human synovia biopsies were taken by OA patients (n=6) from the Instituto de Investigacao e
Inovacao Em Saude da Universidade do Porto (i3s), established in Rua Alfredo Allen, Porto (Portugal).
Patients with OA were diagnosed based on clinical symptoms, examination, and radiographic
findings of knee joints.

All patients participating in this study signed informed consent forms. The study was conducted in
accordance with the Declaration of Helsinki and approved by the Ethics Committee of the University

of Eastern Piedmont (protocol OCEANIA 9/21).

3.2 IMC Workflow

The IMC workflow (Figure 2) can be divided in three parts as shown in Figure 2:
1) Panel design: markers and antibody selection, metal-antibody association, and antibody
conjugation.
2) Staining and tissue ablation: samples processing, morphological and IMC staining and
samples ablation to acquire high-dimensional spatial data.

3) Data analysis: biomarkers expression levels evaluation and single cell analysis.

¥, p s £
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Figure 2: Workflow of the study.

3.3 Panel Design

Table 1 shows the markers included in the staining panel. Each antibody is linked to a specific metal

based on its target expression in the tissue; antibodies have been selected following a literature
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review to effectively characterize the synovial membrane and to determine the optimal dilution to

maximize the signal and minimize the background.

MARKER METAL DILUTION
a-SMA 141 Pr 1:400
Collagen 1 144 Nd 1:400
CD14 148 Nd 1:400
CD146 160 Gd 1:400
CGRP 163 Dy 1:400
CD19 142 Nd 1:300
CD4 156 Gd 1:250
TH 143 Nd 1:200
HLA-DR 151 Eu 1:200
CD11c 154 Sm 1:200
IL-6 161 Dy 1:200
CD140a-b 164 Dy 1:200
Fibronectin 174 Yb 1:200
CD138 149 Sm 1:150
CD11b 146 Nd 1:100
CD163 147 Sm 1:100
CD66b 152 Sm 1:100
CD16 153 Eu 1:100
CD90 158 Gd 1:100
MMP-1 159 Tb 1:100
CD8 162 Dy 1:100
MMP-2 166 Er 1:100
NGFR 167 Er 1:100
NG2 171Yb 1:100
IL-1B 173 Yb 1:100
Podoplanin 175 Lu 1:100
CD31 145 Nd 1:50
TIMP-1 150 Nd 1:50
TNF-a 155 Gd 1:50
CD34 168 Er 1:50
NGF 169 Tm 1:50
CD3 170 Er 1:50
NFH 172 Yb 1:50

Table 1: Antibody panel used for IMC.

3.3.1 Conjugation Process

Metals were dissolved in L-Buffer (StandardBioTools, USA), then loaded onto a polymer, specifically
X8 (StandardBioTools, USA), and purified through multiple washes in C-Buffer (StandardBioTools,
USA). The process involving the metal-loaded polymer utilized a filter device (Sartorius, UK) with a 3
kDa membrane to ensure proper handling. The X8 polymer is essential for retaining the metal,
preventing its loss during washing, and facilitating effective antibody binding. Simultaneously,

antibodies were prepared (in some instances, reconstituted in PBS), reduced using TCEP (tris-2-

15



carboxyethyl-phosphine), and purified through washes in C-Buffer. TCEP was necessary for antibody
reduction to enable successful conjugation with the metal. Subsequently, the antibody was
conjugated with the metal-loaded polymer, followed by additional washes in W-Buffer
(StandardBioTools, USA), and the recovery rate of this process was quantified. All antibody-related
procedures utilized a filter device (Sartorius, UK) equipped with a 50 kDa membrane.

Following the final wash with W-Buffer, 80 ul of W-Buffer were added to dilute the conjugate. Then,
the conjugated antibodies were quantified using a NanoDrop spectrophotometer, measuring the
absorbance of a 2 pl aliquot at 280 nm against a W-Buffer blank. To ensure stability, Antibody
Stabilizer PBS supplemented with 0.05% sodium azide (Candor Bioscience, Germany) was added,
and the conjugated antibodies were stored at +4°C in Protein LoBind tubes of 1.5 ml (Eppendorf,

Germany) (Figure 3).

x4

Ln® 555

3k0a @ @ @ @

\ +TCEP—- 5 ﬁ(i

50 kDa

Figure 3: Workflow of antibodies conjugation.

3.4 Staining and Tissue Ablation

Synovial tissue biopsies were obtained from residual knee joint tissues of patients diagnosed with
OA at various stages of disease.

Samples were processed within a class Il containment hood, where the synovial tissue was carefully
separated from the joint and placed into a 4% formalin solution for human tissue samples. The
samples were fixed in 4% buffered formalin solution for 24 to 48 hours, before proceeding with tissue

processing and embedding in paraffin.

16



3.4.1 Sample Processing

After sample fixation, synovial tissues were processed using the FFPE procedure.

Briefly, the samples were hydrated in ascending grades of alcohol (70%, 80%, 95%, 100%) for 90
minutes each, followed by immersion in xylene for 90 minutes to facilitate paraffin infiltration. Later,
they were submerged into paraffin overnight to permit proper infiltration, and, the next day, the
samples were embedded into paraffin blocks. This final step requires proper orientation of the
sample to obtain observable sections suitable for IMC staining.

Overall, 6 blocks were obtained, one for each OA patient. Successively, serial sections for each
sample of 5 um thickness were cut using a microtome with S35 blade, optimized for soft tissue (Leica,
Germany), and after a few minutes in the water bath at 37°C, they were positioned on charged glass
slides (Bio Optica, Milan). The first section was used to perform Hematoxylin and Eosin staining (Bio
Optica, Milan) for histomorphology, while the following sections were used to perform the IMC

staining.

3.4.2 Hematoxylin and Eosin Staining

Carazzi's Hematoxylin was chosen for its less intense cytoplasm staining. It comprises a complex of
hematein (hematoxylin oxidized by potassium iodate) and aluminum potassium sulfate, which
carries a positive charge facilitating binding to anionic sites on chromatin histone proteins. The
expected results are nuclei stained in purple and cytoplasm in red-pink.

The wax on sections was removed by soaking them in xylene for 20 minutes, followed by hydration
in descending concentrations of alcohol (100%, 95%, 80%, and 70%) and rinsing in distilled water
before staining with Carazzi's Hematoxylin for 12 minutes. A 5-minute tap water wash was
performed to fix the Hematoxylin staining, due to the presence of salts. Subsequently, sections were
immersed in aqueous 1% Eosin for 1 minute, followed by a final wash in distilled water to remove
Eosin. Sections were then dehydrated in ascending concentrations of alcohol (70%, 80%, 100%) for
1 minute each, cleared in xylene for 10 minutes, and finally mounted using BioMount HM (Bio

Optica, Milan).

3.4.3 IMC Staining

The slides underwent a series of steps as following: firstly, they were placed in an oven at 60°C for 2

hours to dissolve the paraffin, followed by dewaxing with xylene for 20 minutes and dehydrated in
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descending concentrations of ethanol (100%, 95%, 80%, 70%) for 5 minutes each, and then washed
in Maxpar Water for other 5 minutes (StandardBioTools, USA).

Subsequently, the slides were placed into a preheated antigen retrieval solution at 96°C for 30
minutes, for retrieving antigens masked by fixation and make them more accessible. This solution
was prepared by diluting 4 ml of Dako target retrieval solution 50X (Dako, Denmark) in 36 ml of
Maxpar Water.

Following incubation, the tubes containing the slides and the retrieval solution were removed from
the oven and placed on a lab bench for 10 minutes to cool them to a temperature of 70°C. The slides
were washed in Maxpar Water and then in Maxpar PBS (StandardBioTools, USA). The sections were
encircled with an A-PAP pen (BioOptica, Italy) and blocked with 3% BSA in Maxpar PBS for 45 minutes
at room temperature in a hydration chamber, to prevent nonspecific binding.

The antibody cocktail was prepared with PBS and BSA 0.5% and added onto the sections, which were
left to incubate overnight at 4°C in a hydration chamber. The volume of the blocking solution and
antibody cocktail was optimized for specific tissues and calculated depending on the size of each
section and the number of total sections.

On the next day, the slides were washed two times in 0.2% Triton X-100 in Maxpar PBS for 8 minutes
each to permeabilize the membrane, followed by two washes in Maxpar PBS for 8 minutes each.
The tissues were stained with Intercalator-Ir (StandardBioTools, USA) in Maxpar PBS for 30 minutes
at room temperature in a hydration chamber to label the nuclei. Finally, the slides were air-dried

after a last wash in Maxpar Water.

3.4.4 IMC Ablation Test and Acquisition

To ensure adequate signal quality, it is important to adjust the ablation energy for the samples. The
ablation energy refers to the energy of the laser ray delivered to the sample, and it can be adjusted
using the energy attenuator. Optimal laser energy (measured in dB) varies depending on the tissue
type and must be optimized before sample acquisition.

To determine the optimal signal-to-noise (SNR) ratio for the 193Ir (DNA-intercalator) channel in the
MCD™ Viewer, a laser energy ramp was conducted across multiple regions of interest (ROls). Five
adjacent small ROIs of 50x50 um were selected; increasing dB values were assigned to each ROI,
starting from 0 dB, and incrementing to 1, 2, 3, 4, and 5 dB. The ablation energy was set to 2 dB for
each ROI.
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Sections were acquired using imaging IMC (Hyperion, StandardBioTools, USA), which uses a powerful
laser to ablate the samples. Laser ablation involves the elimination of tissue plumes from a solid
surface (such as a glass slide) by irradiating it with a pulsating laser beam. Each laser pulse ablates
tissue from a spot measuring 1 um?, with the tissue plumes being carried by helium gas to an argon
flow within the inductively coupled plasma argon system. Here, the tissue plumes are aerosolized,
atomized, and ionized before entering into TOF chamber for detection (CyTOF instrument). The
detector offers a resolution of 1 Da, and discrimination of lanthanides is based on their mass.
Subsequently, the abundance of each isotope can be mapped back to the original coordinates for

each tissue spot.

The tissue was examined systematically, spot-by-spot, while the slide was moved under the laser for
scanning the whole ROI. The acquisition speed averaged around 100-120 minutes for each 1 mm? of
tissue. Each ablation spot corresponds to an image pixel, with each pixel containing various metal

ions. The resulting output consists of a reconstructed multi-channel multiparametric image.

Since it is not possible to ablate the whole sample, ROIs selection is a fundamental step for both
acquisition and analysis. Thus, a standardized pipeline was developed, involving consecutive ROIs
selection, ultimately resulting in the creation of a composite sample image. This approach is
implemented for analyzing biopsies from each patient, facilitating a more in-depth evaluation, and
eliminating bias associated with targeting specific structures of interest.

Each ROI covered an area of 717x661 mm and was acquired at a rate of 200 Hz, and the collected
data were then exported in MCD format. The size of each ROI can be adjust based on the presence

of the glass slide, that can cause interference during the ablation process.

3.5 Data Analysis

3.5.1 MCD™ Viewer

To evaluate the quality of the staining each marker was visualized using the MCD™ Viewer software
(StandardBioTools). This step is crucial for the optimization of antibody dilutions and evaluation of
staining specificity, background occurrence, and potential channel crosstalk allowing to visualize a
maximum of 7 markers simultaneously. It also provides perceptions into the staining's cellular

localization, whether it envelops the entire cell surface, is restricted to specific areas, or is

19



perinuclear. The colors observed in the resulting image are termed pseudo colors because they are
selected by the operator.

High-quality staining is crucial for precise single-cell analysis clustering. To minimize background
noise and enhance signal clarity, various antibody dilutions were validated, with adjustments of the

blocking step duration and concentration.

3.5.2 IMC Segmentation Pipeline
To characterize our patients, we used the “IMC Segmentation Pipeline” for IMC data analysis
provided by BodenmillerGroup

(https://bodenmillergroup.github.io/IMCDataAnalysis/processing.html).

The IMC segmentation pipeline provides a relatively hands-on method for segmenting multi-channel
images through a pixel classification-oriented approach. This pipeline is divided in three parts: (1)

pre-processing, (2) single cells analysis, and (3) spatial analysis.

PRE-PROCESSING

In this step, images data were prepared for processing with Steinbock toolkit. It involves creating a
panel file and extracting images starting from .txt files generated during Hyperion acquisition.
Subsequently, the ilastik software was used for pixel classification, determining the probabilities of
pixels belonging to a specific class (such as nucleus, cytoplasm, or background) for each image, based
on a random forest approach. Then CellProfiler was employed for object segmentation. It is a pixel
classification-based image segmentation, that requires probability images generated before. The

final result was a greyscale object masks containing unique pixel values for each object.

Lastly, there was a step for object measurement, where different cell features like object intensities,
object proprieties (such as area, centroid, major and minor axis length, and eccentricity) and object
neighbors were measured. In particular, the neighbors were assessed based on distances between
object centroids, borders, and by pixel expansion. The object centroid evaluation includes measuring
the maximum distances between object centroids (dmax = 15) and identifying the k-nearest

neighbour based on centroid distances (kmax = 5).
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SINGLE-CELL ANALYSIS
In this section, the initial step involves importing single-cell data and images into R Studio after image

processing and segmentation.

The segmentation quality control was used to observe the accuracy of our data using the
cytomapper package. For the image-level quality control and the cell-level quality control it is
important to calculate the SNR for individual channels and markers; it was calculated as SNR = Is/Iy,
where “Is” is the mean intensity of pixels with true signal, and “I,” is the mean intensity of pixels
containing noise. The threshold to distinguish between signal and noise pixels was determined using
the Otsu thresholding method®8, separating foreground (signal) and background (noise) pixels. SNR
was then computed as the mean intensity of foreground pixels divided by the mean intensity of

background pixels.

The next step involves performing batch effect correction that removes the non-biological
differences between samples (such as different reagents, concentration of antibody), and facilitates
the detection of cell phenotypes. There are three different types of correction:
- FastMNN correction tries to identify the mutual nearest neighbors (MNN) among cells from
different samples and correct the differential expression between batches to align the data.
- Harmony correction aims to cluster and correct the positions of cells by removing the
differences between patients, taking into consideration cell types rather than the specific
conditions of the data.
- Seurat correction tries to identify the MNN in a low-dimensional space before correcting the
expression values of cells. In summary, it uses some techniques of normalization, correction,

and filtering to reduce biological variability between samples.

For this step, the fastMNN correction method was preferred because it takes into consideration

variability between patients. This ultimately led to a better analysis and comparison of the data.

The final step of this section was to define cell phenotypes by clustering them using specific
algorithms. We used two methods: semi-supervised, where we manually generated clusters based
on our desired outcomes (gating cells), and unsupervised, where clusters were generated by a

clustering approach without our influence (PhenoGraph).
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The unsupervised approach uses the PhenoGraph clustering method, that considers a group of cells
and tries to find the most similar cells based on the distance between them (using Euclidean
distance). Then, it creates a graph based on these similarities to ultimately obtain clusters of cells
with similar characteristics. The names of the clusters were assigned based on the expression of
different markers.

For the semi-supervised approach, the cytomapper package was used for gating cells based on
marker expression and visualizing selected cells directly on images. In this case, the clusters that
were created, were influenced by our input because we gated the cells based on our interests and
desired outcome. This approach allowed us to obtain information about the accuracy of cluster
formation. We could visualize if each cell phenotype was correctly classified or misclassified and, in

the end, visualize the probability of finding a specific cluster.

As a final outcome, it was possible to visualize single-cell data and markers abundance at both cell
and sample level. For instance, to visualize the mean marker expression per cell type, we chose Z-

score scaling.

SPATIAL ANALYSIS

In this section, single cells were analyzed in their spatial tissue context. It was possible to visualize
the cells’ centroids and cell-cell interactions as spatial graphs and perform a spatial community
analysis or a cellular neighborhood analysis.

The spatial community analysis was based on cell interactions to identify the major population
present in the samples. The cellular neighborhood created groups of cells based on the information
contained in the direct neighborhood. It was conducted in two different ways: (1) determining the
proportion of cells of a specific type among the neighbors of each cell, and (2) summing the
expression counts across all neighboring cells for each individual cell.

Finally, the interaction analysis was utilized to perform a statistical test about the interaction
between all cell types in the dataset. It took into consideration the interaction of a cell type with

many images, or a specific number of cells of a certain type that were located around a target cell

type.
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4. RESULTS

4.1 Establishment of Staining and Acquisition Protocol

The analysis was performed on synovial biopsies taken from 6 OA patients. Tissues were embedded

in paraffin, and they were processed and acquired with Hyperion.

Firstly, Hematoxylin and Eosin staining was performed, as shown in Figure 4, to orient the tissue and
to identify within the biopsies the synovial regions (marked in red) to be subsequently selected

during the ablation process (Figure 5).

(A)

(B)

Figure 4: (A) Hematoxylin and Eosin staining at higher magnification. (B) The red lines represent the part of tissue that is
Synovium.

On that selected region, we performed IMC acquisition. We set the antibodies panel made of 33
antibodies to target the cells of interest. To optimize the staining and avoiding any issue in the

signal/background ratio we performed serial dilution of each antibody, as shown in Table 2.
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MARKER METAL DILUTION TARGET MARKER METAL DILUTION TARGET
HLA-DR 151 Eu 1:200 Antigen Presenting Cells CD14 148 Nd 1:400 Monocytes
D19 142 Nd 1:300 B cells NFH 172 Yb 1:50 Myelinated Nerve Fibers
IL-18 173 Yb 1:100 Cytokines CD11b 146 Nd 1:100 Myeloid Cells
L6 161 Dy 1.200 Cytokines NGF 169 Tm 1:50 Nerve Growth Factors
TNF-a 155 Gd 1:50 Cytokines NGFR 167 Er 1:100 Nerve Growth Facto.rs Receptors
D31 145 Nd 1:50 Endothelium 016 153 Eu 1:100 Neutrophils
- CD66b 152 Sm 1:100 Neutrophils
cbs4 168 Er 1:50 ____Endothelium_ CD140a-b 164 Dy 1:200 Pericytes
CD90 158 Gd 1:100 Fibroblast Like Synoviocytes D146 160 Gd 1200 Pericytes
Podoplanin 175 Lu 1:100 Fibroblast Like Synoviocytes NG2 171 Yb 1100 Pericytes
CD11c 154 Sm 1:200 Macrophages M1 D138 149 Sm 1:150 Plasma Cells
CD163 147 Sm 1:100 Macrophages M2 CGRP 163 Dy 1:400 Sensory Nerves Fibers
Collagen 1 144 Nd 1:400 Matrix TH 143 Nd 1:200 Sympathetic Nerves Fibers
Fibronectin 174 Yb 1:200 Matrix cD3 170 Er 1:50 T Cells
MMP-1 159 Tb 1:100 Matrix CD8 162 Dy 1:100 T Cytotoxic Cells
MMP-2 166 Er 1:100 Matrix CD4 156 Gd 1:250 T Helper cells
TIMP-1 150 Nd 1:50 Matrix a-SMA 141 pPr 1:400 Vessels

Table 2: Selected dilutions for each antibody and its respective target.

IMC staining was performed simultaneously on all samples to facilitate comparison among samples
by reducing the batch effect, which is a systematic variation caused by differences in reagent lots,
sample preparation, staining conditions, or instrument use, rather than actual biological differences

between samples.

Before each sample ablation, ROIs were chosen based on the Hematoxylin and Eosin staining shown
in Figure 4. Each ROI was designed with a standardized dimension of 717x661 nm, which can be

modified if the area of interest includes a large part of the glass slide (Figure 5).

Figure 5: ROIs design before acquisition.

After the ablation, the acquired ROls were firstly visualized using MCD™ Viewer. This software allows

the visualization of up to 7 colors simultaneously for the evaluation of staining quality and efficacy.
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As an example, Figure 6A shows the staining for CD14 (shown in red), which is a marker expressed
by monocytes. Figure 6B shows a combination of 4 different markers allowing the discrimination of
different type of cells simultaneously: CD14 (red, monocytes), CD140ab (cyan, pericytes), NGFR
(white, nerve growth factor receptor), and IL-1B (green, a proinflammatory cytokine). DNA is marked

in blue.

(A)

Figure 6: MCD™ Viewer images. (A) CD14 marker alone in red. (B) Multiple colors image in which CD14 is marked in
red, CD140ab in cyan, NGFR in white, and IL-18 in green. In both images, DNA is colored in blue.

4.2 Data Analysis

In order to perform, the bioinformatic analysis, 2 ROIs for each of the 6 patients have been chosen
and the corresponding .txt files were generated by the IMC processing, used for the pre-processing

step.

Initially, a Steinbock panel file was generated (Table 3); it contained information about the channels
in an image, namely “channel” (related to the metal conjugated to the antibody) and “name”
(related to the antibody used), and additionally the remaining columns allow us to select the
channels used in different tasks of analysis (keep, ilastik, DeepCell, CellPose). In this step markers of

interest to perform the analysis were selected.
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channel,name,keep,ilastik,deepcell,cellpose
ArAr80,80ArAr,0,,
1127,1271,0,,
Xe131,131Xe,0,,
Xel134,134Xe,0,,,
Ba138,138Ba,0,,
Pr141,aSMA,1,,
Nd142,CD19,1,,
Nd143,TH,1,,
Nd144,COL1,1,,,
Nd145,cD31,1,,
Nd146,CD11b,1,,
Sm147,CD163,1,,,
Nd148,CD14,1,,
Sm149,CD138,1,,
Nd150,TIMP-1,1,,,
Eul51,HLA-DR,1,,
Sm152,CD66b,1,,
Eul53,CD16,1,,
Sm154,CD11c,1,,
Gd155,TNFa,1,,
Gd156,CD4,1,,
Gd158,CD90,1,,,
Tbh159,MMP-1,1,,
Gd160,CD146,1,,
Dy161,IL-6,1,,,
Dy162,CD8,1,,
Dy163,CGRP,1,,,
Dy164,CD140a-b,1,,,
Ho165,ADRP2,0,,
Er166,MMP-2,1,,,
Erl67,NGFR,1,,
Er168,CD34,1,,
Tm169,NGF,1,,,
Er170,CD3,1,,
Yb171NG2,1,,
Yb172,NFH,1,,,
Yb173,IL-1b,1,,
Yb174,FIBRONECTIN,1,,
Lul75,PODOPLANIN,1,,,
Ir191,DNA1,1,1,,
Ir193,DNA2,1,2,,

Table 3: Steinbock panel file.

After pre-processing the panel and the IMC images, the pixel classification step was performed using
the ilastik software, which employs a random forest approach to execute this task. During this step
we marked on each image in red the nucleus, in green the cytoplasm and in blue the background in

order to train the machine for the differentiation of these distinctive regions in each ROI.
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Finally, the whole batch of images was processed to obtain probability images, where each colour

represents the probability of pixels belonging to the corresponding class.

Figure 7: llastik probability image after batch processing. In the image, cytoplasm (shown in green), nuclei
(shown in red) and the background (shown in blue) are represented.
Later, the object segmentation was performed with CellProfiler, which requires probability images
generated by the preceding pixel classification step as input. In addition, after the segmentation step,

grayscale object masks were created containing unique pixel values for each object.

Finally, the ROIs object intensities, region proprieties, and the object neighbours were evaluated. In
particular, the neighbours can be assessed based on distances between object centroids, that
measuring the maximum distances between object centroids (dmax = 15) and identifying the k-

nearest neighbour based on centroid distances (kmax = 5).

Following image processing and segmentation, the data generated were read in R Studio.

The initial part involved the image and cell-level quality control. We evaluated all 12 ROIs to observe
the accuracy of the segmentation. Using cytomapper function, as quality check, we overlapped the
masks obtained from the segmentation process with the composite images allowing us to observe
if the nuclei were centered within the segmentation masks and if all cell types were correctly

segmented (Figure 8).
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Figure 8: Segmentation quality control. This image is used to observe whether the nuclei are centered within the
segmentation masks and if all cell types are correctly segmented. In the image, DNA1 and DNAZ2 are visualized in blue,
NGFR in yellow, NGF in red, and IL-18 in green.

Additionally, single-cell expression of different markers can be visualized in the form of heatmap
grouping the patients based on their indication. In this case, we choose to group all the patients
under the same indication (OA) since the study is still blinded so we were not able to stratify the

patients based on the grade of the disease (Figure 9).

indication indication

FIBRONECTIN | 5 | OA
NA

4 NA

Figure 9: Heatmap of single-cell expression based on the indication (OA) of patients. Blue denotes low expression, light

blue intermediate expression, and yellow high expression. In the upper part of the heatmap are indicated the indication of

the patients and the number of cells. The dendrograms on the left and on the top represent the similarity among markers
and numbers of cells respectively.
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As shown in Figure 9, on a sample of 2000 cells among all patients, aSMA and Fibronectin markers
were the most highly expressed ones. However, it is possible to observe that CD14, CGRP, and COL1

markers were expressed at low levels compared to the other ones.

To improve visualization, the mean marker expression per image can be displayed (Figure 10). This

would help identify images with outlying marker expressions, highlighting the biological differences.
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Figure 10: Heatmap of mean marker expression per image. Blue denotes low expression, light blue intermediate
expression, and yellow high expression. The upper part of the heatmap indicates ROls, indication, and patient_id. The
dendrograms on the left and on the top represent the similarity among markers and ROls respectively.

We found variable expression of each marker between patients and samples. For example,
“SD49_ROI_001"” and “SD49_ROI_002" show different marker expressions, even though they are
samples from the same patient. In addition, the marker expression of patients SD49 and SD48 are

completely different. This variability can be related to the different degrees of the disease in these

patients.

To assess data quality at the single-cell level, we calculated the SNR as the ratio between the mean
of the positive signal and the mean of the negative signal. As shown in Figure 11, we observe a

relatively high signal intensity and a sufficient SNR ratio for all markers, except for DNA1 and DNA2
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ones. These two markers likely have high intensity because some nuclei were considered as

background.
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Figure 11: Signal intensity and SNR ratio for various markers at single-cell level.

As mentioned above, we found a variability among patients (Figure 10). To address it, we used
ridgeline visualizations to compare the staining patterns of all markers across all samples (Figure 12).
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Figure 12: Ridgeline visualization for marker expression among all patients.

We found that differences in marker expression across patients can be ascribed to the different

abundances of cells in each ROI.

Finally, a non-linear dimensionality reduction method was applied to project cells from high-
dimensional down to low-dimensional space, allowing to visualize high dimensional data in a two
bidimensional space. Within this step, we generated UMAP (Uniform Manifold Approximation and
Projection) and TSNE (t-Distributed Stochastic Neighbor Embedding) graphs (Figure 13).

UMAP attempts to preserve the global structure of the data, better maintaining relative distances
between data groups, which helps to interpret global relationships between clusters. On the
contrary, TSNE focuses on preserving the local structure of the data, to maintain the similar point

near to each other, thus making clusters clearly distinct.
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Figure 13: Representation of UMAR, in the left part, and TSNE, in the right part, colored according to patient_id as
indicated.
Then, we performed a fastMNN correction, which identifies the MNN among cells from different

samples and corrects differential expression between batches to align the data.

To assess the quality of the batch correction, the batch.size and lost.var entries are important.
The batch.size entry reports the relative magnitude of the batch effect, while the lost.var entry
represents the percentage of lost variance per merging step. A large batch.size and

low lost.var indicate sufficient batch correction (Figure 14).

> merge_info[,c("left", "right", "batch.size")]
DataFrame with 5 rows and 3 columns
left right batch.size
<List> <List> <numeric>

1 SD5@  SD48  0.558340
2 SD50,SD48  SD42  0.826151
3 SD5@,5D48,SD42  SD52  @.861871
4 5D50,SD48,5D42,... SD49  0.918032
5 SD50,SD48,5D42,... SD51  0.839392
>

>

merge_info$lost.var

Sb4z SD48 SD49 SD50 SD51 SD52
[1,] 0.000000000 0.039730142 0.00000000 0.025685791 0.00000000 0.000000000
[2,] 0.076755370 0.006260113 @.00000000 @.006591908 0.00000000 0.000000000
[3,]1 0.003517314 0.002995257 @.00000000 0.004502786 0.00000000 0.112661570
[4,] 0.001664175 0.001323939 0.0682001@ 0.001483345 0.00000000 0.001791907
[5,]1 ©.013399824 0.008876651 @.02683737 0.011829576 0.08244903 0.010983250

Figure 14: Batch.size and lost.var after fastMNN correction. The batch.size concerns to the initial part of the code, while
the lost.var is related to the second part of the code. It is evident that the numbers for each patient are lower in the
lost.var compared to the batch.size.

As shown in the table generated with the code, the lost.var was lower compared to batch.size,
indicating that the batch correction is effective. For a better and easier visualization of the correction,

we generated a UMAP (Figure 15) which merged all patients.
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Figure 15: UMAP before (left) and after (right) fastMNN correction, colored according to patient_id as indicated.

The expression of markers in the UMAP before and after fastMNN correction can be visualized

(Figure 16).
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Figure 16: UMAP of the expression markers (A) before and (B) after fastMNN correction. Blue represents lower
expression level, while light green indicates marker expression. All markers are merged after batch correction.

After fastMNN correction, all markers were merged without creating separate clusters, as well as all
patients’ data were well-integrated, as shown in Figure 15 where the UMAP after fastMNN

correction showed a perfect overlap of patients.

The most important part involves cell phenotyping. It can be performed applying a semi-supervised
or unsupervised approach. For this instance, we decided to use both approaches to compare the
results and determine the best one based on the desired goal.

In a semi-supervised approach, we manually created clusters to align with our specific desired
outcomes (known as gating cells). Conversely, in an unsupervised approach, clusters were formed
autonomously by a clustering algorithm, such as PhenoGraph, without any manual intervention or

predefined criteria.
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4.2.1 Unsupervised Analysis

In an unsupervised analysis, the clustering approach groups cells based on their similarity in marker
expression or by their proximity in low-dimensional space. For our purpose, we chose the
PhenoGraph clustering approach which considers groups of cells and identifies the most similar cells
based on their distances. This algorithm constructs a graph based on these similarities to ultimately
form clusters of cells having similar characteristics.

For the PhenoGraph function, we choose 60 as “k” value (k = nearest neighbours) since this value
reaches a plateau in the generation of clusters, resulting in the generation of 21 clusters. We

generated the PhenoGraph clusters (Figure 17) on UMAP before and after the fastMNN correction.
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Figure 17: Clusters obtained by PhenoGraph clustering approach. (A) UMAP visualization before applying PhenoGraph
clustering approach and batch correction, showing 21 clusters. (B) UMAP visualization after applying PhenoGraphs
approach and batch correction, showing 17 clusters.

Cluster annotation has been performed by manually labelling each PhenoGraph generated clusters

after fastMNN correction based on their marker expression visualized on heatmap (Figure 18).
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Figure 18: Heatmap of marker expression after PhenoGraph clustering approach. The upper part of the heatmap
indicates patient_id and pg_clusters_corrected, representing the 17 clusters generated after applying PhenoGraph and
batch correction. Red color denotes marker expression, while white color indicates non-expression. The dendrograms on
the left represent the similarity between marker expression.

The clustering method allowed to group specific cells populations of interest such as FLSs,
monocytes, macrophages, T cells, endothelial cells, pericytes, and stroma. Each cluster is named
based on the expression of specific markers that represent a cell population:

- Stroma

- Pericytes

- Endothelium/Pericytes

- Classical Monocytes

- Monocytes

- Endothelium

- Pericytes/NGFR+/MMP1+

- Endothelium/Pericytes/FLS

- Endothelium/Pericytes/NGFR+

- T/Plasma/IL6/MMP2+

- Sensory nerve Fibers
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Additionally, we labelled all cells not belonging to a defined cluster, as “undefined”.

Lastly, we generated a fastMNN-corrected UMAP (Figure 19) to visualize the disposition of the

clusters.
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Figure 19: fastMNN-corrected UMAP colored according to cell clusters as indicated.

The disposition of clusters can be visualized in each ROI, with each point representing a specific cell

that is part of a specific cluster (Figure 20).
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Figure 20: Distribution of cells within specific cluster. Each image represents different ROls of patients.
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For the visualization of each marker related to a specific cell type, we chose the Z-score scaling to

better appreciate the differential expression of markers. In this scaling, those antibodies that were

less expressed were marked in blue, while those markers that were higher expressed were coloured

in red. We generated then two different graphs: one showing all the markers used in the panel

(Figure 21A) and the other one showing our markers of interest (Figure 21B), which allowed us to

visualize FLSs,

populations.
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Figure 21: Heatmap with Z-score scaling. (A) Z-score scaling with all markers. (B) Z-score scaling with markers of
interest. The upper part of each heatmap indicates the number of cells (ncells), with blue representing fewer cells, purple
representing a medium quantity, and yellow representing a high quantity of cells; it also indicates cluster_celltype, with
each color corresponding to a different cluster. The dendrograms at the top and left represent the similarity between cell
numbers and marker expression. In red are indicated markers with higher expression, while in blue markers with lower
expression.

As shown in Figure 20, we found differences related to the expression of some markers. For example,
in Figure 20B the “Stroma” cluster (shown in blue) expressed only COL1 and not Fibronectin markers,
while the “Endothelium/Pericytes” (shown in orange) and the “Endothelium/Pericytes/FLS” clusters
(shown in dark red) expressed the markers specific to these populations, namely endothelial cells,

pericytes and FLSs.

To display the frequencies of cell types per sample, we generated two different bar plots. The first
plot (Figure 22A) had the indication of the disease on the X-axis, which in the same for all samples
(OA). The second plot (Figure 22B) uses the patient_id on the X-axis, representing the name assigned

to each ROI. The Y-axis in both cases represents the percentage of each cell type.
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Figure 22: Bar plot of cluster abundance. (A) Bar plot based on indication (OA). (B) Bar plot based on patient_id. In both
bar plots, each color is associated with cluster names.

Our findings confirmed that all patients expressed all clusters, except for the “T/Plasma/IL6/MMP2+

(shown in dark green) and the “Sensory Nerve Fibers” clusters (shown in light pink). This is probably

due to the fact that we used different samples from different patients with a possible difference in

the grade or severity of the disease. In addition, the consideration of only 2 ROIs for each patient

could represent a factor of variability between each sample.

The analysis pipeline includes at the end a spatial analysis focusing on the interaction between all
cell types in the dataset, particularly “from” cell type and “to” cell type (Figure 23), where red tiles
indicate cell type pairs that significantly interacted in many images. Conversely, blue ones represent
cell type pairs that tended to avoid each other in many images. These interactions can occur within

the same cluster or between different clusters.
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This function calculates how many times two cell types interact in different images and creates an

average of these interactions. The cells were then grouped based on the previously generated

cluster.

We can visualize the “from_label” (cell type from which the interaction originates) and the

“to_label” (cell type which the interaction is destined to). The “sigval” indicates whether the cells

significantly interact or avoid each other, or if there is no statistically significant interaction or

avoidance.
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Figure 23: Interaction graph. It shows the interactions between cell types, “from” cell type on X-axis and “to” cell type on
Y-axis. Red tyles indicate cell type pairs that were detected to significantly interact on many images, while blue tyles
show cell types that avoid each other in many images.

In the interaction graphs, we observed that the “Endothelium/Pericytes” and
“Endothelium/Pericytes/FLS” clusters interacted together and within themselves, while the

“Stroma” cluster interacted only with itself.

Another possible way of interaction analysis was to use the patch method (Figure 24). The
hypothesis to be tested in this approach is whether at least n cells of a certain type (to_label) are
located around a target cell type (called "from_cell"). In summary, this approach checks whether a

specific number of cells of a certain type are located around a target cell of another type.
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The “patch_size” parameter in the function specifies the number of cells that must be present in the

group (or "patch") for the hypothesis to be considered true.
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Figure 24: Interaction graph based on patch method. It shows the interactions of n cell types (to_label) on Y-axis around
a target cell type (from_label) on X-axis. Red tiles indicate cell type pairs that significantly interact in many images, while
blue tiles show cell types that avoid each other in many images.

The graph is comparable with the one generated before, shown in Figure 22. We observed that there
is a strong interaction between “Endothelium/Pericytes/FLS” with the “Endothelium/Pericytes” and

“Endothelium/Pericytes/NGFR+" clusters.

4.2.2 Semi-Supervised Analysis

The semi-supervised approach is based on ground truth labelling and random forest classification.
The cytomapper package provides a function that allows gating cells based on their marker
expression and visualization of selected cells directly on images.
In this project, the choice of clusters was aimed at identifying cells expressing two cytokines: TNF-a
and IL-1P.
The generated clusters were created taking into consideration these specific cells populations: FLS,
monocytes, macrophages, T cells, endothelial cells, pericytes and stroma, detailed as following:

- FLS = IL-1B/TNFa negative + Podoplanin positive

- IL-1B_Peri_Endo = IL-1pB positive + CD140ab/aSMA positive

- TNFa_Peri_Endo = TNF-a positive + aSMA/CD140ab positive
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- Peri_Endo = IL-1B /TNF-a negative + CD140ab/aSMA positive
- IL1B_T = IL-1PB positive + CD3 positive

- TNFa_T = TNF-a positive + CD3 positive

- T=IL-1B/TNF-a negative + CD3 positive

- Mono_IL1B = IL-1B positive + HLADR/CD14 positive

- TNFa_Mono = TNF-a positive + HLADR/CD14 positive

- Mono_Macro = IL-1B/TNF-a negative + HLADR/CD14 positive
- Stroma_Col1 = IL-1B/TNF-a negative + COL1 positive

- Stroma_Fibro = IL-1B/TNF-a negative + Fibronectin positive

Plot1 Plot2 Plot3

HLADR aSMA

Plot4

cD3

Figure 25: Gating strategy. The image illustrates the gating strategy for the IL1B_T cluster, representing T cells positive
for IL-1B expression. In the first plot, all cells expressing IL-1B are considered, followed by selection for double negativity
for CD14 and HLA-DR, as well as for aSMA and CD140ab in subsequent plots. Plot 4 focuses on CD3-positive cells,
resulting in the isolation of T cells expressing IL-1p.

Additionally, we generated a cluster called “undefined” to include all cells that we are not specifically

considering.

Firstly, we generated a table that identifies the labeled cells in each patient (Figure 26). Then, a

random forest classifier was trained to classify all remaining cells as unlabelled cells.
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Figure 26: Table based on labeled cells.

The data generated by the random forest were used to predict the cell phenotypes of the unlabelled

data. The graph below illustrates the probability of finding each cell type in each cluster. To proceed

with the analysis, it is important to choose a threshold that considers only cells after this parameter

(Figure 27). Thus, we selected a maximum classification probability threshold of 0.4 (40%), because

all clusters were considered without excluding any.
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Figure 27: Graphs of maximum probability. Each cluster is represented by a specific colour, with its probability spread

along the X-axis. The selected maximum classification probability threshold is 0.4 (40%) because it takes in

consideration the presence of all clusters.

Thanks to the creation of these clusters through cell gating, it is now possible to generate the same

graphs that were previously created using the unsupervised approach, but this time using the semi-

supervised one.
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The single-cell visualization was created through a fastMNN-corrected UMAP, based on semi-

supervised generated clusters (Figure 28).
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Figure 28: fastMNN-corrected UMAP colored according to cell clusters as indicated.

Clusters can be visualized in each ROI, where each point represents an individual cell belonging to a

specific cluster (Figure 29).
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Figure 29: Distribution of cells within specific cluster. Each image represents different ROls of patients.

To visualize the mean marker expression per cell type, we used Z-score scaling. As done previously,
we generated two graphs: one with all markers used in the panel (Figure 30A) and the other showing

the markers of interest (Figure 30B).
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Figure 30: Heatmap with Z-score scaling. (A) Z-score scaling with all markers. (B) Z-score scaling with the markers of
interest. The upper part of each heatmap indicates the number of cells (ncells), with blue representing fewer cells, purple
representing a medium quantity, and yellow representing a high quantity of cells; it also indicates celltype, with each color

corresponding to a different cluster. The dendrograms at the top and left represent the similarity between cell numbers
and marker expression. In red are indicated markers with higher expression, while in blue markers with lower expression.
We found, as shown in Figure 27B, that the expression of CD3 marker was detectable in three
clusters “TNFa_T” (red), “T” (cyan) and “IL1B_T” (light brown), as expected because CD3 is a marker
of T cells and these clusters were created by considering only cells that were namely T cells, that

might or not express TNF-a and IL-1 cytokines.
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To display the frequencies of cell types per sample, we generated two different bar plots with the
same characteristics as the graphs shown in Figure 22A and 22B. The first plot (Figure 31A) has the
indication (OA) on X-axis, and the second plot (Figure 31B) has the patient_id on X-axis. In both cases,

the Y-axis is represented the percentage of each cell type.

celltype

label

M s
IL1b_Peri_Endo

| iR

W vacro_iLib

. Mono_Macro

. Peri_endo

Stroma_Col1

(A)

Percent of cells
o
o

Stroma_Fibro

T
. TNFa_Mono

[l Fa_Pei Endo

W

undefined

0.0

o
indication

celltype

I —] | P—
- Iabel
- 5
E—

IL1b_Peri_Endo

B o

. Macro_IL1b
. Mono_Macro
. Peri_endo

Stroma_Col1

o
o

(B)

Stroma_Fibro

Percent of cells

T
Bl ™Fa Mono
B ™Fa e Endo

B et

undefined

0.0

g » w2 S & 0@‘7/

patient_id
Figure 31: Bar plots of cluster abundance. (A) Bar plot based on indication (OA). (B) Bar plot based on patient_id. In
both bar plots, each color is associated with cluster names.
In both graphs, we found several undefined cells (shown in grey). This was expected because we
gated only specific cell populations (FLSs, monocytes, macrophages, T cells, endothelial cells,
pericytes and stroma), so, all remaining cells were classified as “undefined”.
Additionally, we observed a similar distribution of cell types between patients, except for the

“Strom_Col1” (pink), “IL1B_Peri_Endo” (ocher) and “FLS” (dark brown) clusters.
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This analysis concludes with the spatial analysis, focusing on the interaction between all cell types

in the dataset, with the same criteria previously described (Figure 32).
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Figure 32: Interaction graph. It shows the interactions between cell types, “from” cell type on X-axis and “to” cell type on
Y-axis. Red tyles indicate cell type pairs that are detected to significantly interact on many images, while blue tyles show
cell types that avoid each other in many images.

In Figure 32 is possible to observe that “Macro_IL1b”, “Mono_Macro”, and “TNFa_Mono” clusters
interact together, while “Stroma_Coll1” and “Stroma_Fibro” clusters interact only with their

respective labels.

In addition, the patch method (Figure 33) was used to check whether a specific number of cells of a

certain type (to_label) were located around a target cell of another type (from_label).
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Figure 33: Interaction graph based on patch method. It shows the interactions of n cell types (to_label) on Y-axis around
a target cell type (from_label) on X-axis. Red tiles indicate cell type pairs that significantly interact in many images, while

blue tiles show cell types that avoid each other in many images.

Figure 33 is comparable with the one generated before (Figure 32). We found a strong interaction

between the “Mono_Macro” cluster with the “Macro_IL1B” and “Peri_Endo”.
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5. DISCUSSION

OA typically targets the synovium or synovial membrane, a highly vascularized and innervated
connective tissue which regulates synovial fluid volume and composition, and chondrocytes
maintenance. In OA patients, the synovium becomes thicker, more vascularized and there is an
increase infiltration of inflammatory cells¥'®>. Among them, FLSs, lymphocytes, macrophages,
pericytes, and nerve fibers are the predominant synovial cells, playing a crucial role in OA
pathogenesis, thanks also to the involvement of soluble pro-inflammatory mediators and cytokines,

which together contribute to the inflammatory process!®3.

Identifying the aforementioned specific cell populations linked to OA pathogenesis is crucial for
understanding the disease's cellular mechanisms and developing personalized therapies. Recent
advancements in omics technologies, such as IMC, have shown great promise in understanding
distinct cell populations within joint tissues of OA patients, paving the way for personalized therapy

approaches*,

Thus, this thesis aims to develop a bioinformatics pipeline for analysing IMC data, with the goal of
elucidating cell composition and their spatial distribution in OA synovial samples.

IMC is an advanced technology enabling precise assessment of complex phenotypes and immune
interactions in tissue microenvironments. It can overcome the limitations of traditional
immunohistochemical analysis, such as the limited number of markers that can be visualized. IMC
overcome this issue allowing the analysis of over 40 markers simultaneously and at single-cell level,

thereby minimizing background noise and signal overlap®.

We designed an antibody panel composed of 33 antibodies, able to characterize the infiltrated
immune cells into synovial tissue as well as FLSs. The bioinformatic pipeline was build using IMC data
from 6 OA samples. For each patient we selected 2 ROIs, and consequentially we analysed the data
using the “IMC Segmentation Pipeline” provided by BodenmillerGroup.

Initially, a heatmap was created to visualize the mean expression of all markers. However, as shown
in Figure 10, we found a high variability among patients, thus emphasizing the need for batch
correction to eliminate non-biological differences between samples and enhance cell phenotype

detection. The fastMNN correction method harmonized the data by identifying MNN among cells
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from various samples and thus correcting differential expression between batches. Subsequently, in
the UMAP (Figure 15), all patients were analyzed together; the expression of markers in Figure 16B

shows their integration without distinct clusters being formed.

To build a bioinformatic pipeline, an important step involves cell phenotyping. For this purpose, we
employed two different methods: unsupervised and semi-supervised. In both cases, we generated
the same graphs to compare the outcomes of these two methods.

Using an unsupervised approach, we generated 17 clusters with the PhenoGraph function (Figure
17), in each cluster cells were grouped basing on their similarity in marker expression or their
proximity in low-dimensional space, without any manual intervention or predefined criteria. These
17 clusters were then named based on marker expression shown in the heatmap (Figure 18), to
identify populations of our interest such as FLSs, monocytes, macrophages, T cells, endothelial cells,
pericytes and stroma.

On the other hand, in semi-supervised approach, cells were gated manually based on their marker
expression and visualized directly on images. Using the cytomapper function, we generated 12
clusters, focusing on specific cells populations, such as FLSs, monocytes, macrophages, T cells,
endothelial cells, pericytes and stroma, along with the expression of TNF-a and IL-1B in these
populations.

In both cases, a cluster called “undefined” was created to group all cells that were not considered

or could not be distinguished.

We used Z-score scaling to better appreciate the expression of markers in both unsupervised and
semi-supervised approaches. In Figures 21B and 30B, we reported that the expression levels of the
following markers such as COL-1, HLA-DR, aSMA, IL-1B, Fibronectin, Podoplanin, TNF-a, CD14,
CD140ab, and CD3, did not change in both analyses. These markers identify our populations of
interest (FLSs, monocytes, macrophages, T cells, endothelial cells, pericytes and stroma). However,
we noted that these cells were better represented in the semi-supervised approach, which also
shows the expression of the two cytokines of interest IL-1B and TNF-a. In contrast, when using the
unsupervised approach, the expression of the two cytokines is not retained in the initial heatmap
generated after applying the PhenoGraph function, as depicted in Figure 18. This initial heatmap
shows that the cytokine expression data is lost, making it challenging to discern meaningful patterns.

However, as shown in Figure 21B, the expression of these cytokines does reappear even within the
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undefined cluster. This reappearance highlights a significant issue with the unsupervised approach:
it is difficult to accurately distinguish and identify the specific populations of interest. The inability
to discriminate between different populations correctly can lead to challenges in interpreting the
data and identifying the correct population.

We also noted that FLSs were present in the heatmap generated by the semi-supervised approach;
in contrast, in the unsupervised approach, the expression of these cells was found in the undefined
clusters, indicating that with the unsupervised approach we may lose some important information.
However, these results suggested that both approaches can identify specific cells populations that
are similar, taking into account, as shown in Figures 22 and 31, that the frequencies of the clusters
in each patient were not homogeneous. This may be due to (a) the small number of ROIs chosen for
each patient, and (b) the severity of OA that was unknow, which may be an important parameter to
consider before applying a bioinformatic analysis. In line, Mimpen et al. (2023), reported different
frequencies of immune and myeloid cells in 10 patients with advanced knee OA disease by
immunofluorescence. They also observed a predominance of macrophages and T cells in each
patient, and they were able to distinguish FLSs according to the positive or negative expression of
CD34, CD90, Podoplanin and FAP markers>®,

As confirmed by Zou et al. (2023) and Mimpen et al. (2023), FLSs, macrophages and T cells are the
most prevalent cells present in the synovium of OA patients. These cells play a crucial role in the
inflammatory process affecting the synovial membrane. Specifically, FLSs and macrophages secrete
large amounts of inflammatory factors, such as IL-1 and TNF-a, which are two of the most prevalent
cytokines that promote synovial inflammation and possibly lead to cartilage lesions®®®1. Our results
showed that these two cytokines are expressed by pericytes, endothelial cells, monocytes and T cells
populations!”3°. In particular, as shown in Figure 31, by using the semi-supervised approach, the
population most representative of IL-13 expression consists of macrophages. However, TNF-a shows
a greater prevalence in the T cell populations, suggesting that while it is distributed among various
cell types, its expression is more pronounced in T cells.

Therefore, by identifying more specifically which types of cells express these molecules, IL-13 and
TNF-a can be targeted therapeutically, as the within the scope of SINPAIN project.

In addition, it could be interesting to better characterize the predominant cells population using
specific markers and create specific clusters in the semi-supervised approach, as further prospective

of this study.
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Furthermore, based on our results, we can assess how the unsupervised approach is more suitable
for exploratory analysis given its characteristic of random generation of clusters without the need of
any input. Therefore, since no specific target is wanted, this method is perfectly suitable for the task.
On the contrary, if the target is known, the semi-supervised approach may significantly outperform
the unsupervised method, with the risk of losing some important information, regarding the co-
expression of some markers on specific cells that we were not expecting. This method would provide
information quicker and in a more specific way since inputs and outputs have already been given

and the algorithm's only task is to fit the single-cell data into our indications.

Another important aspect in the bioinformatic pipeline to be considered, is the analysis of single
cells in their spatial tissue. Ours allows for the analysis of interactions among all cell types using both
semi-supervised and unsupervised approaches.

The interaction analysis shown in Figures 23, 24, 32 and 33 calculated the frequency of interactions
between two cell types across different images by generating at the end an average of these
interactions. The cells are then grouped based on the previously generated clusters. In these graphs,
it is possible to observe that most clusters interact primarily with their respective cluster. However,
a few clusters interacted with other ones, such as the “Macro_IL1B”, “Mono_Macro”, and
“TNFa_Mono” clusters in the semi-supervised graph, and the “Endothelium/Pericytes” and
“Endothelium/Pericytes/FLS” clusters in the unsupervised graph.

For the purposes of this thesis, the interaction analysis was sufficient to compare the two
approaches. However, spatial analysis itself is far more intricate and precise, offering the potential
to create more detailed and informative graphs aimed at achieving a deeper analysis.

Spatial analysis extends beyond examining interactions between cell types. There are several
advanced approaches that can provide a more comprehensive understanding of cellular behavior
and interactions within a sample. For instance, spatial community analysis can reveal how cells form
distinct communities are spatially organized, providing insights into the structural organization of
tissues. Cellular neighborhood analysis also allows for the examination of the immediate
microenvironment of each cell, identifying how neighboring cells may influence each other’s
behavior and function. Additionally, spatial context analysis can uncover patterns of cell distribution
and localization within the broader tissue context, highlighting areas of cellular cooperation or

conflict.
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These sophisticated spatial analyses are crucial for a detailed and comprehensive view of cellular
interactions and behaviours. They enable researchers to identify precise patterns and intricate
networks that simpler methods might overlook. Emphasizing the importance of these sophisticated
spatial analyses underscores their potential to provide significant insights and drive advancements

in the field.

In conclusion, we have developed a detailed bioinformatics pipeline capable of deep
characterization of the synovial membrane. This serves as a fundamental step for conducting further
analysis on larger datasets to gain a deeper understanding in OA pathogenesis. Moreover, exploring
interindividual variability among patients with the same disease could elucidate specific cell
populations crucial to the pathogenetic process. This could lead to the development of new care

strategies, prediction of treatment response, and guidance for precision medicine treatment plans.
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